Um die Frage zu beantworten, betrachten wir die Definitionen von Injektivität und die gegebenen Funktionen. Eine Funktion \( f: X \to Y \) ist injektiv, wenn für alle \( x_1, x_2 \in X \) g... [mehr]
Um die Frage zu beantworten, betrachten wir die Definitionen von Injektivität und die gegebenen Funktionen. Eine Funktion \( f: X \to Y \) ist injektiv, wenn für alle \( x_1, x_2 \in X \) g... [mehr]
Um die Abbildung \( f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) definiert durch \( f(x, y) = x^2 - y \) zu analysieren, betrachten wir die Injektivität und Surjektivität. 1. **Injekti... [mehr]
Ja, wenn die Funktion \( f \) injektiv ist, dann ist auch die Abbildung \( F: \text{Abb}(M) \to \text{Abb}(M) \), definiert durch \( F(g) = f \circ g \), injektiv. Um dies zu zeigen, nehmen wir an, d... [mehr]
Ja, wenn die Funktion \( f: M \to M \) injektiv ist, dann ist auch die Abbildung \( F: M \times M \to M \times M \), definiert durch \( F(x, y) = (f(x), f(y)) \), injektiv. Um dies zu zeigen, nehmen... [mehr]
Um zu bestimmen, ob die Abbildung \( f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \times \mathbb{Q} \) definiert durch \( f(x,y) = (x^2, x - y) \) injektiv, surjektiv, injektiv und surjektiv oder ke... [mehr]
Um zu bestimmen, ob die Funktion \( f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) definiert durch \( f(x, y) = x^2 + 2y \) injektiv, surjektiv, beides oder keines von beiden ist, analysieren wir d... [mehr]
Ja, die Funktion \( f(x) = 3x + 5 \) ist injektiv. Eine Funktion ist injektiv, wenn für \( f(a) = f(b) \) immer gilt, dass \( a = b \). Um dies zu zeigen, setzen wir \( f(a) = f(b) \): \[ 3a +... [mehr]
Die gegebene Abbildung ist \( g: \mathbb{R} \to [0, \infty), x \mapsto x^2 \). 1. **Wertebereich**: Der Wertebereich von \( g \) ist \( [0, \infty) \), da das Quadrat einer reellen Zahl immer nicht n... [mehr]
Um die Abbildung \( f: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q} \) definiert durch \( f(a, b) = ab \) zu analysieren, betrachten wir die Eigenschaften Injektivität und Surjektivität. 1.... [mehr]
Die Funktion \( f(x) = \frac{1}{x^2} \) ist weder subjektiv noch injektiv. 1. **Injektivität**: Eine Funktion ist injektiv (oder eineindeutig), wenn verschiedene Elemente des Definitionsbereichs... [mehr]
Um zu bestimmen, ob die Funktion \( f: \mathbb{Q} \to \mathbb{Q} \) definiert durch \( f(x) = 3x + 4 \) injektiv und surjektiv ist, betrachten wir beide Eigenschaften: 1. **Injektivität**: Eine... [mehr]
Um zu zeigen, dass die Funktion \( f': X \to f(X) \), definiert durch \( f'(x) = f(x) \), bijektiv ist, wenn \( f: X \to Y \) injektiv ist, müssen wir sowohl die Injektivität als a... [mehr]
Um zu bestimmen, ob die Abbildung \( f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \times \mathbb{Q} \) definiert durch \( f(x,y) = (x^2 + y^2, x - y) \) injektiv, surjektiv oder beides ist, analysie... [mehr]
Um die Abbildung \( f: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q} \), definiert durch \( f(a, b) = \frac{a}{b} \), zu analysieren, betrachten wir die Eigenschaften Injektivität und Surjektivit&a... [mehr]
Eine injektive Funktion, auch als Eins-zu-eins-Funktion bezeichnet, ist eine Funktion, bei der jedem Element aus der Definitionsmenge genau ein eindeutiges Element in der Zielmenge zugeordnet wird. Da... [mehr]