Ist die Funktion f: Q -> Q, x -> 3x + 4 injektiv und surjektiv?

Antwort

Um zu bestimmen, ob die Funktion \( f: \mathbb{Q} \to \mathbb{Q} \) definiert durch \( f(x) = 3x + 4 \) injektiv und surjektiv ist, betrachten wir beide Eigenschaften: 1. **Injektivität**: Eine Funktion ist injektiv, wenn verschiedene Eingabewerte verschiedene Ausgabewerte erzeugen. Das bedeutet, wenn \( f(x_1) = f(x_2) \), dann muss \( x_1 = x_2 \) gelten. Angenommen, \( f(x_1) = f(x_2) \): \[ 3x_1 + 4 = 3x_2 + 4 \] Subtrahiere 4 von beiden Seiten: \[ 3x_1 = 3x_2 \] Teile durch 3: \[ x_1 = x_2 \] Da dies für beliebige \( x_1 \) und \( x_2 \) gilt, ist die Funktion injektiv. 2. **Surjektivität**: Eine Funktion ist surjektiv, wenn für jedes \( y \in \mathbb{Q} \) ein \( x \in \mathbb{Q} \) existiert, sodass \( f(x) = y \). Setze \( y = f(x) = 3x + 4 \) und löse nach \( x \): \[ y = 3x + 4 \implies 3x = y - 4 \implies x = \frac{y - 4}{3} \] Da \( y \) beliebig gewählt werden kann und \( \frac{y - 4}{3} \) immer ein rationaler Wert ist, ist die Funktion surjektiv. Zusammenfassend ist die Funktion \( f(x) = 3x + 4 \) sowohl injektiv als auch surjektiv. Daher ist sie bijektiv.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]

Was ist der Mittelwertsatz für f(x) = -1/3x^3 + 1/4x^2 + 3x + 2?

Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]

Welche Werte haben a, d und e in der Funktion f(x) = a(x-d)(x-e)?

Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Zum Beispiel wären spezifische Punkte, durch die die Funktion... [mehr]