Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Die gegebene Abbildung ist \( g: \mathbb{R} \to [0, \infty) \) definiert durch \( g(x) = x^2 \). 1. **Wertebereich**: Der Wertebereich von \( g \) ist \( [0, \infty) \), da das Quadrat einer reellen... [mehr]
Ja, die Funktion \( f(x) = x + 3 \) ist surjektiv. Eine Funktion ist surjektiv (oder "auf"), wenn jedes Element der Zielmenge mindestens einmal als Funktionswert angenommen wird. Das bedeut... [mehr]
Die Funktion \( f(x) = \frac{1}{x^2} \) ist weder subjektiv noch injektiv. 1. **Injektivität**: Eine Funktion ist injektiv (oder eineindeutig), wenn verschiedene Elemente des Definitionsbereichs... [mehr]
Ja, die Funktion \( f(x) = 3x + 5 \) ist surjektiv. Eine Funktion ist surjektiv, wenn für jedes Element \( y \) im Zielbereich \( \mathbb{R} \) ein Element \( x \) im Definitionsbereich \( \mathb... [mehr]
Um zu überprüfen, ob die Funktion \( f: \mathbb{R} \to \mathbb{R}^+ \) mit \( f(x) = 3x^2 + 2 \) surjektiv ist, müssen wir feststellen, ob für jedes \( y \in \mathbb{R}^+ \) ein \(... [mehr]
Um zu bestimmen, ob die Funktion \( f: \mathbb{Q} \to \mathbb{Q} \) definiert durch \( f(x) = 3x + 4 \) injektiv und surjektiv ist, betrachten wir beide Eigenschaften: 1. **Injektivität**: Eine... [mehr]
Um zu bestimmen, ob die Abbildung \( f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \times \mathbb{Q} \) definiert durch \( f(x,y) = (x^2, x - y) \) injektiv, surjektiv, injektiv und surjektiv oder ke... [mehr]
Um zu bestimmen, ob die Funktion \( f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) definiert durch \( f(x, y) = x^2 + 2y \) injektiv, surjektiv, beides oder keines von beiden ist, analysieren wir d... [mehr]
Um zu bestimmen, ob die Abbildung \( f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \times \mathbb{Q} \) definiert durch \( f(x,y) = (x^2 + y^2, x - y) \) injektiv, surjektiv oder beides ist, analysie... [mehr]
Um die Abbildung \( f: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q} \), definiert durch \( f(a, b) = \frac{a}{b} \), zu analysieren, betrachten wir die Eigenschaften Injektivität und Surjektivit&a... [mehr]