Gegeben ist die Funktion g: R → [0,∞), x 7→ x². Bestimme den Wertebereich und untersuche die Injektivität, Surjektivität und Bijektivität der Abbildung.

Antwort

Die gegebene Abbildung ist \( g: \mathbb{R} \to [0, \infty) \) definiert durch \( g(x) = x^2 \). 1. **Wertebereich**: Der Wertebereich von \( g \) ist \( [0, \infty) \), da das Quadrat einer reellen Zahl immer nicht negativ ist. Für \( x = 0 \) erhält man \( g(0) = 0 \) und für \( x \to \infty \) geht \( g(x) \) gegen \( \infty \). Somit sind alle Werte im Intervall \( [0, \infty) \) erreichbar. 2. **Injektivität**: Eine Funktion ist injektiv, wenn verschiedene Eingabewerte verschiedene Ausgabewerte erzeugen. Für \( g(x) = x^2 \) gilt: - \( g(a) = g(b) \) impliziert \( a^2 = b^2 \), was bedeutet, dass \( a = b \) oder \( a = -b \). - Daher ist \( g \) nicht injektiv, da z.B. \( g(2) = g(-2) = 4 \). 3. **Surjektivität**: Eine Funktion ist surjektiv, wenn jeder Wert im Zielbereich mindestens einmal erreicht wird. Da der Wertebereich von \( g \) genau \( [0, \infty) \) ist und alle Werte in diesem Intervall durch geeignete \( x \) (z.B. \( x = \sqrt{y} \) für \( y \geq 0 \)) erreicht werden können, ist \( g \) surjektiv. 4. **Bijektivität**: Eine Funktion ist bijektiv, wenn sie sowohl injektiv als auch surjektiv ist. Da \( g \) nicht injektiv ist, ist sie auch nicht bijektiv. Zusammenfassend: - Wertebereich: \( [0, \infty) \) - Injektiv: Nein - Surjektiv: Ja - Bijektiv: Nein

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]

Was ist der Mittelwertsatz für f(x) = -1/3x^3 + 1/4x^2 + 3x + 2?

Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]

Welche Werte haben a, d und e in der Funktion f(x) = a(x-d)(x-e)?

Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Zum Beispiel wären spezifische Punkte, durch die die Funktion... [mehr]