Welche Funktion besitzt sowohl ein Minimum als auch ein Maximum und hat auf beiden Seiten eine Asymptote zur x-Achse?

Antwort

Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktion \[ f(x) = \frac{x^3}{1 + x^2} \] **Eigenschaften:** - Für \( x \to \pm\infty \) gilt: \( f(x) \to 0 \) (x-Achse ist Asymptote). - Die Funktion hat ein lokales Maximum und ein lokales Minimum. **Begründung:** - Die Ableitung \( f'(x) = \frac{3x^2(1 + x^2) - 2x^4}{(1 + x^2)^2} \) zeigt, dass es zwei Extremstellen gibt. - Die Funktion ist für alle \( x \) definiert. **Graphische Darstellung:** Du kannst dir den Graphen z.B. bei [Desmos](https://www.desmos.com/calculator) oder [GeoGebra](https://www.geogebra.org/graphing) anschauen, um die Eigenschaften zu überprüfen. **Zusammenfassung:** \[ f(x) = \frac{x^3}{1 + x^2} \] ist eine Funktion mit Minimum, Maximum und der x-Achse als Asymptote auf beiden Seiten.

Neue Frage stellen

Verwandte Fragen

Welche Funktion hat ein Maximum bei (332.0822, 0.83269) und ein Minimum bei (332.2387, -0.82764) und konvergiert für x gegen unendlich gegen die x-Achse?

Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]

Was ist die Umkehrfunktion von -x?

Die Umkehrfunktion (Inverse) von \( f(x) = -x \) ist ebenfalls \( f^{-1}(x) = -x \).

Was ist eine Umkehrfunktion?

Die Umkehrfunktion (auch Inverse Funktion genannt) ist eine Funktion, die die Wirkung einer anderen Funktion rückgängig macht. Wenn du eine Funktion \( f \) hast, die einen Wert \( x \) auf... [mehr]

Was ist die Heaviside-Funktion von x+5?

Die **Hauptwertfunktion** (oft als „hr-Funktion“ abgekürzt) eines Ausdrucks wie \( x+5 \) ist einfach die Funktion selbst, da es sich um eine lineare Funktion handelt. Die Funktionsv... [mehr]

Was ist eine Kurvendiskussion?

Eine Kurvendiskussion ist eine systematische Untersuchung des Verlaufs einer mathematischen Funktion, meist einer Funktion f(x). Ziel ist es, möglichst viele Eigenschaften der Funktion zu bestimm... [mehr]

Wie kann ich eine Funktion in der Mitte einer anderen Gleichung verwenden?

Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]

Wie lautet die Ableitung von f(x) = ((x-3)(x+2))/((x+1)(x+5))?

Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]

Was ist eine Integralfunktion?

Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]

Welcher Wortschatz ist typisch bei der Laplace-Transformation?

Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]

Was ist die Produktregel einfach erklärt?

Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]