Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Die Funktion \( f(x) = \frac{1}{x^2} \) ist weder subjektiv noch injektiv. 1. **Injektivität**: Eine Funktion ist injektiv (oder eineindeutig), wenn verschiedene Elemente des Definitionsbereichs auf verschiedene Elemente des Wertebereichs abgebildet werden. Das bedeutet, dass \( f(a) = f(b) \) nur dann gilt, wenn \( a = b \). Für \( f(x) = \frac{1}{x^2} \) gilt jedoch: \[ f(a) = f(b) \implies \frac{1}{a^2} = \frac{1}{b^2} \implies a^2 = b^2 \implies a = b \text{ oder } a = -b \] Das bedeutet, dass \( f(x) \) nicht injektiv ist, da \( f(a) = f(-a) \) für \( a \neq 0 \). 2. **Subjektivität**: Eine Funktion ist subjektiv (oder surjektiv), wenn jedes Element des Wertebereichs von mindestens einem Element des Definitionsbereichs getroffen wird. Das bedeutet, dass für jedes \( y \) im Wertebereich ein \( x \) im Definitionsbereich existiert, sodass \( f(x) = y \). Der Wertebereich von \( f(x) = \frac{1}{x^2} \) ist \( (0, \infty) \), da \( \frac{1}{x^2} \) immer positiv ist und gegen unendlich geht, wenn \( x \) gegen 0 geht. Es gibt jedoch keine \( x \), sodass \( f(x) = 0 \) oder ein negatives \( y \) erreicht wird. Daher ist die Funktion nicht surjektiv auf \( \mathbb{R} \) oder \( \mathbb{R}^+ \). Zusammengefasst: \( f(x) = \frac{1}{x^2} \) ist weder injektiv noch subjektiv.
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Probe für \( a = 2 \) durchzuführen, setzen wir \( a \) in den Ausdruck \( (3a^3 + 4a^2)(-2a - a^5) \) ein. 1. Berechne zuerst \( 3a^3 + 4a^2 \): \[ 3(2^3) + 4(2^2) = 3(8) + 4(... [mehr]
Die Funktion \( e^x \) wächst schneller als jede Polynomfunktion \( x^n \) (wobei \( n \) eine positive ganze Zahl ist), die Exponentialfunktion eineante Wachstumsrate hat, die unabhängig vo... [mehr]