Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um zu überprüfen, ob die Funktion \( f: \mathbb{R} \to \mathbb{R}^+ \) mit \( f(x) = 3x^2 + 2 \) surjektiv ist, müssen wir feststellen, ob für jedes \( y \in \mathbb{R}^+ \) ein \( x \in \mathbb{R} \) existiert, sodass \( f(x) = y \). Die Funktion \( f(x) = 3x^2 + 2 \) hat folgende Eigenschaften: 1. Der Ausdruck \( 3x^2 \) ist immer nicht negativ, da das Quadrat einer reellen Zahl immer größer oder gleich null ist. 2. Daher ist \( f(x) \) immer größer oder gleich 2, da der kleinste Wert von \( 3x^2 \) bei \( x = 0 \) erreicht wird, was \( f(0) = 2 \) ergibt. Das bedeutet, dass der Wertebereich von \( f(x) \) die Menge \( [2, \infty) \) ist. Da \( \mathbb{R}^+ \) die Menge aller positiven reellen Zahlen ist, die bei 0 beginnt und bis unendlich reicht, ist \( \mathbb{R}^+ = (0, \infty) \). Da \( f(x) \) niemals Werte kleiner als 2 annehmen kann, gibt es kein \( x \in \mathbb{R} \), für das \( f(x) \) einen Wert in \( (0, 2) \) annehmen kann. Somit ist die Funktion \( f(x) = 3x^2 + 2 \) nicht surjektiv auf \( \mathbb{R}^+ \).
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Hier sind drei Aufgaben zum Thema "Rationale Zahlen anordnen": 1. Ordne die folgenden rationalen Zahlen der Größe nach: \( \frac{3}{4}, -\frac{1}{2}, 0, \frac{2}{3}, -\frac{3}{4}... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Hier sind drei Aufgaben zum Thema rationale Zahlen auf dem Zahlenstrahl: 1. **Aufgabe 1:** Markiere die rationalen Zahlen \(-3\), \(-1.5\), \(0\), \(2\) und \(3.5\) auf einem Zahlenstrahl. Beschrifte... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]