Rationale Zahlen sind alle Zahlen, die als Bruch dargestellt werden können, wobei der Zähler und der Nenner ganze Zahlen sind und der Nenner nicht null ist. Das heißt, jede Zahl der Fo... [mehr]
Um zu überprüfen, ob die Funktion \( f: \mathbb{R} \to \mathbb{R}^+ \) mit \( f(x) = 3x^2 + 2 \) surjektiv ist, müssen wir feststellen, ob für jedes \( y \in \mathbb{R}^+ \) ein \( x \in \mathbb{R} \) existiert, sodass \( f(x) = y \). Die Funktion \( f(x) = 3x^2 + 2 \) hat folgende Eigenschaften: 1. Der Ausdruck \( 3x^2 \) ist immer nicht negativ, da das Quadrat einer reellen Zahl immer größer oder gleich null ist. 2. Daher ist \( f(x) \) immer größer oder gleich 2, da der kleinste Wert von \( 3x^2 \) bei \( x = 0 \) erreicht wird, was \( f(0) = 2 \) ergibt. Das bedeutet, dass der Wertebereich von \( f(x) \) die Menge \( [2, \infty) \) ist. Da \( \mathbb{R}^+ \) die Menge aller positiven reellen Zahlen ist, die bei 0 beginnt und bis unendlich reicht, ist \( \mathbb{R}^+ = (0, \infty) \). Da \( f(x) \) niemals Werte kleiner als 2 annehmen kann, gibt es kein \( x \in \mathbb{R} \), für das \( f(x) \) einen Wert in \( (0, 2) \) annehmen kann. Somit ist die Funktion \( f(x) = 3x^2 + 2 \) nicht surjektiv auf \( \mathbb{R}^+ \).
Rationale Zahlen sind alle Zahlen, die als Bruch dargestellt werden können, wobei der Zähler und der Nenner ganze Zahlen sind und der Nenner nicht null ist. Das heißt, jede Zahl der Fo... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]