Trigonometrie wird am rechtwinkligen Dreieck benötigt, um die Beziehungen zwischen den Winkeln und den Seitenlängen des Dreiecks zu verstehen und zu berechnen. Hier sind einige spezifische A... [mehr]
Trigonometrie wird am rechtwinkligen Dreieck benötigt, um die Beziehungen zwischen den Winkeln und den Seitenlängen des Dreiecks zu verstehen und zu berechnen. Hier sind einige spezifische A... [mehr]
Um mit Trigonometrie zu rechnen, sind die grundlegenden trigonometrischen Funktionen und ihre Beziehungen wichtig. Hier sind die Schritte, um mit Trigonometrie zu arbeiten: 1. **Grundlegende Funktion... [mehr]
Um die Ableitungsfunktion von \( \sqrt{5} \cdot \cos(x) \) zu bestimmen, kannst du die Regel für die Ableitung von Konstanten und die Ableitung der Kosinusfunktion verwenden. 1. Die Konstante \(... [mehr]
Es gibt einige Tricks und Merkhilfen, um sich die Werte der trigonometrischen Funktionen Sinus (sin), Kosinus (cos) und Tangens (tan) für bestimmte Winkel zu merken. Hier sind einige davon: 1. *... [mehr]
Der Sinus von 9/8 (im Bogenmaß) ist ein mathematischer Wert und hat nichts mit Sonnenschein zu tun. Der Sinus von 9/8 Bogenmaß kann mit einem Taschenrechner oder einer mathematischen Softw... [mehr]
Um die Seite \( b \) in einem rechtwinkligen Dreieck zu berechnen, wenn die Hypotenuse \( c = 50 \) cm und der Winkel \( B = 60^\circ \) gegeben sind, kann der Kosinussatz verwendet werden. Der Kosinu... [mehr]
Der Wert von \(\sin(2\pi)\) ist 0. Das liegt daran, dass der Sinus einer Winkelgröße in der Einheitskreis-Darstellung die y-Koordinate des Punktes auf dem Einheitskreis ist, der durch dies... [mehr]
Das erste Additionstheorem für den Kosinus lautet: \[ \cos(x_1 \pm x_2) = \cos(x_1) \cos(x_2) \mp \sin(x_1) \sin(x_2) \] Um dies zu zeigen, können wir die Definitionen der trigonometrische... [mehr]
Um die Funktionalmatrix (auch als Jacobi-Matrix bezeichnet) der Funktion \( f: \mathbb{R}^4 \to \mathbb{R} \) zu bestimmen, bei der \( f(x) = \cos(x_4 + x_2) \), müssen die partiellen Ableitungen... [mehr]
Der Sinus (sin) ist eine mathematische Funktion, die in der Trigonometrie verwendet wird. Sie beschreibt das Verhältnis der Länge der Gegenkathete zur Hypotenuse in einem rechtwinkligen Drei... [mehr]
Um die Differentialgleichung \( y' \cos(2x) - 2y \sin(2x) = \sin(2x) \cos(2x) \) zu lösen, kann man die Methode der Trennung der Variablen oder eine geeignete Substitution verwenden. Hier is... [mehr]
Um die Ableitung der Funktion \( g(x) = -\sin(x) - 2\cos(x) \) zu berechnen, werden die Ableitungsregeln für die trigonometrischen Funktionen verwendet. Die Ableitung von \(-\sin(x)\) ist \(-\co... [mehr]
Um die Ableitung der Funktion \( f(x) = \cos(x) - \sin(x) \) zu berechnen, verwendest du die Ableitungsregeln für die trigonometrischen Funktionen. Die Ableitung von \(\cos(x)\) ist \(-\sin(x)\)... [mehr]
Die Gleichung \(2 \sin(\pi) = \sin(2 \cdot \frac{\pi}{2})\) kann durch die Eigenschaften der Sinusfunktion und die spezifischen Werte der Winkel im Einheitskreis erklärt werden. 1. **Berechnung... [mehr]
Im Einheitskreis, der ein Kreis mit Radius 1 ist, gibt es interessanten Zusammenhang zwischen deneln \(\alpha) und \(\beta\), wenn sie sich die gleichen Punkte auf dem Kreis beziehen Hier sind einige... [mehr]