Gegeben ist die Funktion: \( f(x) = \sqrt{2x} \) Das ist eine Verkettung zweier Funktionen: - **Äußere Funktion:** \( g(u) = \sqrt{u} = u^{1/2} \) - **Innere Funktion:** \( h(x) = 2x \)... [mehr]
Um die Ableitungsfunktion von \( \sqrt{5} \cdot \cos(x) \) zu bestimmen, kannst du die Regel für die Ableitung von Konstanten und die Ableitung der Kosinusfunktion verwenden. 1. Die Konstante \( \sqrt{5} \) bleibt unverändert. 2. Die Ableitung von \( \cos(x) \) ist \( -\sin(x) \). Daher ist die Ableitung von \( \sqrt{5} \cdot \cos(x) \): \[ \frac{d}{dx} \left( \sqrt{5} \cdot \cos(x) \right) = \sqrt{5} \cdot \frac{d}{dx} \left( \cos(x) \right) = \sqrt{5} \cdot (-\sin(x)) = -\sqrt{5} \cdot \sin(x) \] Die Ableitungsfunktion ist also: \[ -\sqrt{5} \cdot \sin(x) \]
Gegeben ist die Funktion: \( f(x) = \sqrt{2x} \) Das ist eine Verkettung zweier Funktionen: - **Äußere Funktion:** \( g(u) = \sqrt{u} = u^{1/2} \) - **Innere Funktion:** \( h(x) = 2x \)... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Die Zahl 2,221441469 liegt zwischen π (Pi ≈ 3,141592654) und √2 (Wurzel aus 2 ≈ 1,414213562). Sie ist also größer als die Wurzel aus 2, aber kleiner als Pi. Ein Vergle... [mehr]
Die Aussage „Die Wurzel aus a² ist gleich dem Betrag von a“ lässt sich mit den Eigenschaften der Quadratwurzel und des Betrags erklären – und das hängt vom Zahlen... [mehr]
Die Wurzel aus \( a^2 \) ist der Betrag von \( a \), weil die Quadratwurzel per Definition immer den nicht-negativen Wert liefert. Hier die Erklärung im Detail: - Das Quadrat einer Zahl \( a \)... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Die Produktregel ist eine wichtige Ableitungsregel in der Differentialrechnung. Sie wird verwendet, wenn du die Ableitung eines Produkts zweier Funktionen berechnen möchtest. Angenommen, du hast... [mehr]
Die Ableitung der Funktion \( f(x) = e^{a \cdot x} \) nach \( x \) ist: \[ f'(x) = a \cdot e^{a \cdot x} \] Dabei ist \( a \) eine Konstante.
Gegeben ist das Integral: \[ \int_{0}^{0{,}25} \frac{dx}{\sqrt{x} \cdot (1 - \sqrt{x})} \] Um das Integral zu lösen, bietet sich die Substitution \( u = \sqrt{x} \) an. **Schritt 1: Substituti... [mehr]
Die Funktion \( g(x) = |x-1| + |x-2| \) ist **nicht überall differenzierbar**. **Begründung:** Der Ausdruck \( |x-a| \) ist an der Stelle \( x = a \) **nicht differenzierbar**, da dort ein... [mehr]