Zusammenhang zwischen Alpha und Beta im Einheitskreis?

Antwort

Im Einheitskreis, der ein Kreis mit Radius 1 ist, gibt es interessanten Zusammenhang zwischen deneln \(\alpha) und \(\beta\), wenn sie sich die gleichen Punkte auf dem Kreis beziehen Hier sind einige wichtige: 1. **Komplementärwinkel**: Wenn \(\alpha\) und \(\beta\) Komplementärwinkel sind, dann gilt: \[ \alpha + \beta = 90^\circ \quad \text{oder} \quad \alpha + \beta = \frac{\pi}{2} \text{ (im Bogenmaß)} \] In diesem Fall sind die Sinus- und Kosinuswerte der Winkel wie folgt verknüpft: \[ \sin(\alpha) = \cos(\beta) \quad \text{und} \quad \cos(\alpha) = \sin(\beta) \] 2. **Supplementärwinkel**: Wenn \(\alpha\) und \(\beta\) Supplementärwinkel sind, dann gilt: \[ \alpha + \beta = 180^\circ \quad \text{oder} \quad \alpha + \beta = \pi \text{ (im Bogenmaß)} \] In diesem Fall sind die Sinus- und Kosinuswerte der Winkel wie folgt verknüpft: \[ \sin(\alpha) = \sin(\beta) \quad \text{und} \quad \cos(\alpha) = -\cos(\beta) \] 3. **Antikomplementärwinkel**: Wenn \(\alpha\) und \(\beta\) Antikomplementärwinkel sind, dann gilt: \[ \alpha - \beta = 180^\circ \quad \text{oder} \quad \alpha - \beta = \pi \text{ (im Bogenmaß)} \] In diesem Fall sind die Sinus- und Kosinuswerte der Winkel wie folgt verknüpft: \[ \sin(\alpha) = -\sin(\beta) \quad \text{und} \quad \cos(\alpha) = -\cos(\beta) \] Diese Beziehungen sind nützlich, um trigonometrische Funktionen und ihre Eigenschaften im Einheitskreis zu verstehen.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Sind bei einer Tautologie alle Winkel gleich groß? Ja oder nein?

Ja, bei einem Quadrat sind alle Winkel gleich groß. Jeder Winkel misst 90 Grad.

Was ist der Sinus von Alpha in einem Dreieck mit Ankathete 2.8 cm, Hypotenuse 4 cm und Gegenkathete 2.8 cm?

Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]