Zusammenhang zwischen Alpha und Beta im Einheitskreis?

Antwort

Im Einheitskreis, der ein Kreis mit Radius 1 ist, gibt es interessanten Zusammenhang zwischen deneln \(\alpha) und \(\beta\), wenn sie sich die gleichen Punkte auf dem Kreis beziehen Hier sind einige wichtige: 1. **Komplementärwinkel**: Wenn \(\alpha\) und \(\beta\) Komplementärwinkel sind, dann gilt: \[ \alpha + \beta = 90^\circ \quad \text{oder} \quad \alpha + \beta = \frac{\pi}{2} \text{ (im Bogenmaß)} \] In diesem Fall sind die Sinus- und Kosinuswerte der Winkel wie folgt verknüpft: \[ \sin(\alpha) = \cos(\beta) \quad \text{und} \quad \cos(\alpha) = \sin(\beta) \] 2. **Supplementärwinkel**: Wenn \(\alpha\) und \(\beta\) Supplementärwinkel sind, dann gilt: \[ \alpha + \beta = 180^\circ \quad \text{oder} \quad \alpha + \beta = \pi \text{ (im Bogenmaß)} \] In diesem Fall sind die Sinus- und Kosinuswerte der Winkel wie folgt verknüpft: \[ \sin(\alpha) = \sin(\beta) \quad \text{und} \quad \cos(\alpha) = -\cos(\beta) \] 3. **Antikomplementärwinkel**: Wenn \(\alpha\) und \(\beta\) Antikomplementärwinkel sind, dann gilt: \[ \alpha - \beta = 180^\circ \quad \text{oder} \quad \alpha - \beta = \pi \text{ (im Bogenmaß)} \] In diesem Fall sind die Sinus- und Kosinuswerte der Winkel wie folgt verknüpft: \[ \sin(\alpha) = -\sin(\beta) \quad \text{und} \quad \cos(\alpha) = -\cos(\beta) \] Diese Beziehungen sind nützlich, um trigonometrische Funktionen und ihre Eigenschaften im Einheitskreis zu verstehen.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie berechnet man den Schnittwinkel zwischen der Ebene 2x1 + x2 = 4 und der x1-x3-Ebene?

Um den Winkel zwischen der Ebene \( F: 2x_1 + x_2 = 4 \) und der \( x_1x_3 \)-Ebene zu berechnen, gehst du wie folgt vor: **1. Bestimme die Normalenvektoren:** - Die Ebene \( F \) hat die Gleichung... [mehr]

Wie viele Lösungswege gibt es, um ein Dreieck mit einem Katheter und einem Winkel zu lösen?

Um ein Dreieck zu lösen, also alle Seiten und Winkel zu bestimmen, benötigt man in der Regel mindestens drei Angaben, wobei mindestens eine davon eine Seite sein muss. Deine Frage bezieht si... [mehr]