Um die Winkelneigung (den Winkel α) zu berechnen, wenn die Gegenkathete 1 mm und die Ankathete 40 mm beträgt, verwendest du die Tangens-Funktion: \[ \tan(\alpha) = \frac{\text{Gegenkathete... [mehr]
Um den Winkel zwischen der Ebene \( F: 2x_1 + x_2 = 4 \) und der \( x_1x_3 \)-Ebene zu berechnen, gehst du wie folgt vor: **1. Bestimme die Normalenvektoren:** - Die Ebene \( F \) hat die Gleichung \( 2x_1 + x_2 = 4 \). Der Normalenvektor ist also \( \vec{n}_F = (2, 1, 0) \). - Die \( x_1x_3 \)-Ebene ist die Ebene mit \( x_2 = 0 \). Ihr Normalenvektor ist \( \vec{n}_{x_1x_3} = (0, 1, 0) \). **2. Berechne den Winkel zwischen den Normalenvektoren:** Der Kosinus des Winkels \( \alpha \) zwischen den Normalenvektoren ist: \[ \cos\alpha = \frac{\vec{n}_F \cdot \vec{n}_{x_1x_3}}{|\vec{n}_F| \cdot |\vec{n}_{x_1x_3}|} \] Berechne das Skalarprodukt: \[ \vec{n}_F \cdot \vec{n}_{x_1x_3} = (2, 1, 0) \cdot (0, 1, 0) = 2 \cdot 0 + 1 \cdot 1 + 0 \cdot 0 = 1 \] Beträge: \[ |\vec{n}_F| = \sqrt{2^2 + 1^2 + 0^2} = \sqrt{5} \] \[ |\vec{n}_{x_1x_3}| = \sqrt{0^2 + 1^2 + 0^2} = 1 \] Setze ein: \[ \cos\alpha = \frac{1}{\sqrt{5}} \] \[ \alpha = \arccos\left(\frac{1}{\sqrt{5}}\right) \approx 63,43^\circ \] **3. Gesuchter Schnittwinkel:** Der Schnittwinkel zwischen den Ebenen ist der Komplementärwinkel zu \( \alpha \), also: \[ \beta = 90^\circ - \alpha \approx 26,57^\circ \] **Antwort:** Die Ebene \( F \) schneidet die \( x_1x_3 \)-Ebene unter einem Winkel von etwa **26,57°**.
Um die Winkelneigung (den Winkel α) zu berechnen, wenn die Gegenkathete 1 mm und die Ankathete 40 mm beträgt, verwendest du die Tangens-Funktion: \[ \tan(\alpha) = \frac{\text{Gegenkathete... [mehr]
Um die Normalform einer Ebene in GeoGebra einzugeben, verwende die folgende Syntax: ``` Ebene: a*x + b*y + c*z = d ``` Dabei sind **a**, **b** und **c** die Komponenten des Normalenvektors, und **d*... [mehr]
Der Tangens eines Winkels ist definiert als das Verhältnis von Gegenkathete zu Ankathete in einem rechtwinkligen Dreieck. Gesucht ist also der Winkel \( x \), für den gilt: \[ \tan(x) = 2 \... [mehr]
Um die gegenseitige Lage von Ebenen und Geraden im Raum zu bestimmen, gehst du folgendermaßen vor: **1. Geradengleichung und Ebenengleichung aufstellen** - Geradengleichung (Parameterform):... [mehr]
Um den Winkel zu berechnen, wenn du die Entfernung (Grundlinie) und die Höhe (Gegenkathete) hast, kannst du die folgende Formel aus der Trigonometrie verwenden: **tan(α) = Höhe / Entf... [mehr]