Nein, ein Kreis kann keinen negativen (Minus-)Radius haben. Der Radius eines Kreises ist per Definition der Abstand vom Mittelpunkt zu einem Punkt auf dem Rand des Kreises und dieser Abstand ist immer... [mehr]
Um die gegenseitige Lage von Ebenen und Geraden im Raum zu bestimmen, gehst du folgendermaßen vor: **1. Geradengleichung und Ebenengleichung aufstellen** - Geradengleichung (Parameterform): \(\vec{g}(t) = \vec{p} + t \cdot \vec{r}\) (\(\vec{p}\): Stützvektor, \(\vec{r}\): Richtungsvektor, \(t \in \mathbb{R}\)) - Ebenengleichung (Normalenform): \(\vec{n} \cdot (\vec{x} - \vec{q}) = 0\) (\(\vec{n}\): Normalenvektor, \(\vec{q}\): Stützvektor der Ebene) oder (Parameterform): \(\vec{x} = \vec{q} + s \cdot \vec{u} + r \cdot \vec{v}\) (\(\vec{u}, \vec{v}\): Spannvektoren) **2. Einsetzen der Geradengleichung in die Ebenengleichung** Setze \(\vec{g}(t)\) für \(\vec{x}\) in die Ebenengleichung ein und löse nach \(t\): - In der Normalenform: \(\vec{n} \cdot (\vec{g}(t) - \vec{q}) = 0\) **3. Fallunterscheidung** - **a) Es gibt genau eine Lösung für \(t\):** Die Gerade schneidet die Ebene in einem Punkt (sie sind **schneidend**). - **b) Es gibt keine Lösung für \(t\):** Die Gerade ist **parallel** zur Ebene. Das ist der Fall, wenn der Richtungsvektor der Geraden \(\vec{r}\) senkrecht zum Normalenvektor der Ebene \(\vec{n}\) steht (\(\vec{n} \cdot \vec{r} = 0\)), aber der Stützvektor der Geraden nicht in der Ebene liegt. - **c) Es gibt unendlich viele Lösungen für \(t\):** Die Gerade liegt **in der Ebene**. Das ist der Fall, wenn \(\vec{n} \cdot \vec{r} = 0\) und der Stützvektor der Geraden die Ebenengleichung erfüllt. **Zusammengefasst:** 1. Setze die Geradengleichung in die Ebenengleichung ein. 2. Löse nach \(t\). 3. Prüfe, wie viele Lösungen es gibt: - Eine Lösung: schneidend - Keine Lösung: parallel - Unendlich viele Lösungen: Gerade liegt in der Ebene **Tipp:** Oft hilft es, die Normalenform der Ebene zu verwenden, da das Skalarprodukt (\(\vec{n} \cdot \vec{r}\)) direkt zeigt, ob die Gerade parallel zur Ebene ist. Weitere Infos findest du z.B. bei [Mathebibel.de](https://www.mathebibel.de/gerade-und-ebene-im-raum).
Nein, ein Kreis kann keinen negativen (Minus-)Radius haben. Der Radius eines Kreises ist per Definition der Abstand vom Mittelpunkt zu einem Punkt auf dem Rand des Kreises und dieser Abstand ist immer... [mehr]
Ein Thaleskreis ist ein Kreis, der über einer Strecke als Durchmesser konstruiert wird. Jeder Punkt auf dem Kreis, der nicht auf dem Durchmesser liegt, bildet mit den Endpunkten des Durchmessers... [mehr]
Deine Unterscheidung zwischen „cohaerentischer Geometrie“ und „euklidischer Geometrie“ scheint auf einer speziellen Definition oder Interpretation zu beruhen, die in der klassi... [mehr]
Deine Aussage ist inhaltlich nicht ganz korrekt und die Begriffe sind teilweise unklar oder nicht standardisiert. Es gibt keine allgemein anerkannte „cohaerentische Geometrie“ in der Mathe... [mehr]
Du hast recht, dass Archimedes in seinen Arbeiten oft mit Zahlen beziehungsweise Zahlenverhältnissen gearbeitet hat, während klassische geometrische Konstruktionen (etwa mit Zirkel und Linea... [mehr]
Die archimedische Ermittlung des Kreisumfangs bzw. des Kreisverhältnisses (also der Zahl π) ist tatsächlich ein durchgehend rein geometrisch konstruierter Grenzprozess. Archimedes hat da... [mehr]
Eine geometrische Entität ist ein grundlegendes Element der Geometrie, das eine bestimmte Form oder Lage im Raum beschreibt. Zu den wichtigsten geometrischen Entitäten zählen Punkte, Li... [mehr]
Der Begriff „intrinsisch plausibel“ ist kein feststehender oder historisch klar definierter Begriff in der Mathematik oder Geometrie. Er taucht in der mathematischen Literatur nicht als st... [mehr]
Cohaerentische Geometrie legt Wert darauf, dass geometrische Konstruktionen und Begriffe aus sich selbst heraus, also **intrinsisch**, plausibel und nachvollziehbar sind. Das bedeutet, dass die Defini... [mehr]
Der Begriff „intrinsische Plausibilität geometrischer Konstruktion“ bezieht sich auf die Frage, wie überzeugend oder nachvollziehbar eine geometrische Konstruktion aus sich selbs... [mehr]