Wie bestimme ich die gegenseitige Lage von Ebenen und Geraden?

Antwort

Um die gegenseitige Lage von Ebenen und Geraden im Raum zu bestimmen, gehst du folgendermaßen vor: **1. Geradengleichung und Ebenengleichung aufstellen** - Geradengleichung (Parameterform): \(\vec{g}(t) = \vec{p} + t \cdot \vec{r}\) (\(\vec{p}\): Stützvektor, \(\vec{r}\): Richtungsvektor, \(t \in \mathbb{R}\)) - Ebenengleichung (Normalenform): \(\vec{n} \cdot (\vec{x} - \vec{q}) = 0\) (\(\vec{n}\): Normalenvektor, \(\vec{q}\): Stützvektor der Ebene) oder (Parameterform): \(\vec{x} = \vec{q} + s \cdot \vec{u} + r \cdot \vec{v}\) (\(\vec{u}, \vec{v}\): Spannvektoren) **2. Einsetzen der Geradengleichung in die Ebenengleichung** Setze \(\vec{g}(t)\) für \(\vec{x}\) in die Ebenengleichung ein und löse nach \(t\): - In der Normalenform: \(\vec{n} \cdot (\vec{g}(t) - \vec{q}) = 0\) **3. Fallunterscheidung** - **a) Es gibt genau eine Lösung für \(t\):** Die Gerade schneidet die Ebene in einem Punkt (sie sind **schneidend**). - **b) Es gibt keine Lösung für \(t\):** Die Gerade ist **parallel** zur Ebene. Das ist der Fall, wenn der Richtungsvektor der Geraden \(\vec{r}\) senkrecht zum Normalenvektor der Ebene \(\vec{n}\) steht (\(\vec{n} \cdot \vec{r} = 0\)), aber der Stützvektor der Geraden nicht in der Ebene liegt. - **c) Es gibt unendlich viele Lösungen für \(t\):** Die Gerade liegt **in der Ebene**. Das ist der Fall, wenn \(\vec{n} \cdot \vec{r} = 0\) und der Stützvektor der Geraden die Ebenengleichung erfüllt. **Zusammengefasst:** 1. Setze die Geradengleichung in die Ebenengleichung ein. 2. Löse nach \(t\). 3. Prüfe, wie viele Lösungen es gibt: - Eine Lösung: schneidend - Keine Lösung: parallel - Unendlich viele Lösungen: Gerade liegt in der Ebene **Tipp:** Oft hilft es, die Normalenform der Ebene zu verwenden, da das Skalarprodukt (\(\vec{n} \cdot \vec{r}\)) direkt zeigt, ob die Gerade parallel zur Ebene ist. Weitere Infos findest du z.B. bei [Mathebibel.de](https://www.mathebibel.de/gerade-und-ebene-im-raum).

Neue Frage stellen

Verwandte Fragen

Kann ein Kreis einen negativen Radius haben?

Nein, ein Kreis kann keinen negativen (Minus-)Radius haben. Der Radius eines Kreises ist per Definition der Abstand vom Mittelpunkt zu einem Punkt auf dem Rand des Kreises und dieser Abstand ist immer... [mehr]

Wie sieht ein Beispielbild zu einem Geometrie-Thaleskreis aus?

Ein Thaleskreis ist ein Kreis, der über einer Strecke als Durchmesser konstruiert wird. Jeder Punkt auf dem Kreis, der nicht auf dem Durchmesser liegt, bildet mit den Endpunkten des Durchmessers... [mehr]

Was unterscheidet cohaerentische Geometrie von euklidischer Geometrie hinsichtlich der Kurvenerzeugung im kartesischen System?

Deine Unterscheidung zwischen „cohaerentischer Geometrie“ und „euklidischer Geometrie“ scheint auf einer speziellen Definition oder Interpretation zu beruhen, die in der klassi... [mehr]

Ist die cohaerentische Geometrie gegenüber der euklidischen eine uneingeschränkte Geometrie, die auch Parabeln wie y=x^2 und y=x^3 einbezieht?

Deine Aussage ist inhaltlich nicht ganz korrekt und die Begriffe sind teilweise unklar oder nicht standardisiert. Es gibt keine allgemein anerkannte „cohaerentische Geometrie“ in der Mathe... [mehr]

Liefert Archimedes eine Zahl oder eine Strecke im Vergleich zu einer geometrischen Konstruktion?

Du hast recht, dass Archimedes in seinen Arbeiten oft mit Zahlen beziehungsweise Zahlenverhältnissen gearbeitet hat, während klassische geometrische Konstruktionen (etwa mit Zirkel und Linea... [mehr]

Ist die archimedische Ermittlung des Kreisverhältnisses ein rein geometrisch konstruierter Grenzprozess?

Die archimedische Ermittlung des Kreisumfangs bzw. des Kreisverhältnisses (also der Zahl π) ist tatsächlich ein durchgehend rein geometrisch konstruierter Grenzprozess. Archimedes hat da... [mehr]

Was ist eine geometrische Entität?

Eine geometrische Entität ist ein grundlegendes Element der Geometrie, das eine bestimmte Form oder Lage im Raum beschreibt. Zu den wichtigsten geometrischen Entitäten zählen Punkte, Li... [mehr]

Wurde der Begriff intrinsisch plausibel erstmals mit der kohärentischen Geometrie eingeführt und für Konstruktionen verwendet?

Der Begriff „intrinsisch plausibel“ ist kein feststehender oder historisch klar definierter Begriff in der Mathematik oder Geometrie. Er taucht in der mathematischen Literatur nicht als st... [mehr]

Was bedeutet intrinsische Plausibilität kohaerentischer Geometrie im Unterschied zur klassischen Geometrie?

Cohaerentische Geometrie legt Wert darauf, dass geometrische Konstruktionen und Begriffe aus sich selbst heraus, also **intrinsisch**, plausibel und nachvollziehbar sind. Das bedeutet, dass die Defini... [mehr]

Was bedeutet intrinsische Plausibilität geometrischer Konstruktionen?

Der Begriff „intrinsische Plausibilität geometrischer Konstruktion“ bezieht sich auf die Frage, wie überzeugend oder nachvollziehbar eine geometrische Konstruktion aus sich selbs... [mehr]