Was unterscheidet eine geometrische Linie von einer Kurve?

Antwort

Eine geometrische Linie ist in der Mathematik eine unendliche, gerade Verbindung zwischen zwei Punkten ohne Breite und Dicke. Sie verläuft immer in einer Richtung und hat keine Krümmung. Eine Kurve hingegen ist eine geometrische Figur, die nicht gerade verläuft, sondern sich in beliebiger Weise krümmen kann. Sie kann offen oder geschlossen sein und ihre Richtung beliebig oft ändern. Zusammengefasst: - **Linie:** immer gerade, keine Krümmung - **Kurve:** kann gekrümmt sein, Richtung kann sich ändern Beide sind idealisierte mathematische Objekte ohne Breite und Dicke.

Kategorie: Mathematik Tags: Linie Kurve Geometrie
Neue Frage stellen

Verwandte Fragen

Ist eine Linie im mathematischen Sinn auch eine Kurve, da beide durch Krümmung unterschieden werden?

Im mathematischen und geometrischen Sinn ist eine **Linie** (meist als „Gerade“ bezeichnet) ein Spezialfall einer **Kurve**. Eine Kurve ist allgemein eine stetige, oft glatte Verbindung vo... [mehr]

Ist die euklidische Geometrie die ursprüngliche Geometrie oder gibt es Geometrien ohne Einschränkungen?

Die euklidische Geometrie ist tatsächlich eine der ältesten und am ausführlichsten untersuchten Formen der Geometrie. Sie basiert auf den Axiomen, die erstmals systematisch von Euklid i... [mehr]

Was bedeutet ursprüngliche Geometrie ohne euklidische Einschränkungen für Grenzprozesse und die Parabel y = x^2?

Deine Frage scheint sich auf die Kosten („Was kostet…“) oder den Wert („Was leistet…“) der ursprünglichen Geometrie im Vergleich zur euklidischen Geometrie z... [mehr]

Was ist der Unterschied zwischen ursprünglicher Geometrie und euklidischer Geometrie?

Die **ursprüngliche Geometrie** bezieht sich auf die frühen, vorwissenschaftlichen Formen der Geometrie, wie sie in alten Kulturen (z. B. Ägypten, Babylonien) praktiziert wurde. Sie ent... [mehr]

Was bedeutet Anschneidung von Flächen?

Die Anschneidung von Flächen bezeichnet in der Geometrie und Technik das Verfahren, bei dem zwei oder mehr Flächen so dargestellt oder berechnet werden, dass ihr gemeinsamer Bereich (also di... [mehr]

Was bedeutet eine nichteuklidische Geometrie, in der quadratische und kubische Parabeln zugelassen sind, und welche neuen Einsichten ergeben sich daraus?

In der klassischen euklidischen Geometrie werden Geraden als die grundlegenden „Linien“ betrachtet, auf denen die Geometrie aufgebaut ist. In nichteuklidischen Geometrien (wie der hyperbol... [mehr]

Ist eine ursprüngliche Geometrie ohne euklidische Einschränkungen bei Kurven und Grenzprozessen möglich?

Ja, eine Geometrie ohne die klassischen euklidischen Einschränkungen ist möglich und wurde in der Mathematik auch entwickelt. Die euklidische Geometrie basiert auf den fünf berühmt... [mehr]

Ist eine ursprüngliche Geometrie ohne euklidische Einschränkungen möglich?

Ja, das ist möglich. Die ursprüngliche Geometrie, wie sie von den alten Griechen (insbesondere Euklid) entwickelt wurde, basiert auf bestimmten Axiomen und Annahmen – zum Beispiel dem... [mehr]

Stellt die cohaerentische Geometrie im Vergleich zur euklidischen Geometrie eine ursprüngliche Ursprünglichkeit wieder her?

Die Frage zielt auf einen philosophisch-mathematischen Vergleich zwischen der sogenannten „cohaerentischen Geometrie“ und der klassischen euklidischen Geometrie ab, insbesondere im Hinblic... [mehr]

Ist die cohaerentische Geometrie ohne grundlegende Bedeutung, weil sie nicht im mathematischen Mainstream ist?

Nein, dass die cohaerentische Geometrie bislang nicht im mathematischen Mainstream aufgenommen wurde, bedeutet nicht automatisch, dass sie falsch oder ohne grundleg Bedeutung ist. In der Mathematik gi... [mehr]