Um die Berechnung durchzuführen, folge diesen Schritten: 1. Berechne die Wurzel von 54: \(\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}\) 2. Multipliziere das Ergebnis mit 6: \(3\sqrt{6}... [mehr]
Die Definitionsmenge einer Funktion ist die Menge aller Werte, für die die Funktion definiert ist. Um die Definitionsmenge zu bestimmen, gehst du in der Regel wie folgt vor: 1. **Identifikation der Funktion**: Bestimme die Funktion, für die du die Definitionsmenge finden möchtest. 2. **Überprüfung auf Einschränkungen**: Analysiere die Funktion auf mögliche Einschränkungen: - **Division durch Null**: Wenn die Funktion einen Bruch enthält, stelle sicher, dass der Nenner nicht null wird. - **Wurzel aus negativen Zahlen**: Bei Wurzeln (insbesondere Quadratwurzeln) darf der Ausdruck unter der Wurzel nicht negativ sein. - **Logarithmen**: Der Logarithmus ist nur für positive Werte definiert. 3. **Zusammenstellung der Bedingungen**: Formuliere die Bedingungen, die die Werte erfüllen müssen, um in der Definitionsmenge zu sein. 4. **Bestimmung der Definitionsmenge**: Setze die Bedingungen zusammen, um die Definitionsmenge in Intervallnotation oder als Menge anzugeben. Beispiel: Für die Funktion \( f(x) = \frac{1}{x-2} \) ist die Definitionsmenge \( D = \mathbb{R} \setminus \{2\} \), da \( x \) nicht 2 sein darf, um eine Division durch Null zu vermeiden.
Um die Berechnung durchzuführen, folge diesen Schritten: 1. Berechne die Wurzel von 54: \(\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}\) 2. Multipliziere das Ergebnis mit 6: \(3\sqrt{6}... [mehr]
Überschlagsrechnungen sind eine nützliche Methode, um schnell eine ungefähre Vorstellung von einem Ergebnis zu bekommen, ohne genaue Berechnungen durchführen zu müssen. Hier s... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
0,5 als Bruch kann als 1/2 dargestellt werden.
27.000 geteilt durch 1.100 ergibt 24,545454545... oder gerundet 24,55.
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Der Überschlag von 4784 bezieht sich in der Regel auf eine grobe Schätzung oder Rundung. Wenn du den Wert auf die nächste Tausend runden möchtest, wäre der Überschlag 500... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]