Das Integral von \((\ln x)^2\) bezüglich \(x\) kannst du mit partieller Integration berechnen. Hier ist die Schritt-für-Schritt-Lösung: Setze: - \(u = (\ln x)^2\) ⇒ \(du = \frac{2... [mehr]
Die Definitionsmenge einer Funktion ist die Menge aller Werte, für die die Funktion definiert ist. Um die Definitionsmenge zu bestimmen, gehst du in der Regel wie folgt vor: 1. **Identifikation der Funktion**: Bestimme die Funktion, für die du die Definitionsmenge finden möchtest. 2. **Überprüfung auf Einschränkungen**: Analysiere die Funktion auf mögliche Einschränkungen: - **Division durch Null**: Wenn die Funktion einen Bruch enthält, stelle sicher, dass der Nenner nicht null wird. - **Wurzel aus negativen Zahlen**: Bei Wurzeln (insbesondere Quadratwurzeln) darf der Ausdruck unter der Wurzel nicht negativ sein. - **Logarithmen**: Der Logarithmus ist nur für positive Werte definiert. 3. **Zusammenstellung der Bedingungen**: Formuliere die Bedingungen, die die Werte erfüllen müssen, um in der Definitionsmenge zu sein. 4. **Bestimmung der Definitionsmenge**: Setze die Bedingungen zusammen, um die Definitionsmenge in Intervallnotation oder als Menge anzugeben. Beispiel: Für die Funktion \( f(x) = \frac{1}{x-2} \) ist die Definitionsmenge \( D = \mathbb{R} \setminus \{2\} \), da \( x \) nicht 2 sein darf, um eine Division durch Null zu vermeiden.
Das Integral von \((\ln x)^2\) bezüglich \(x\) kannst du mit partieller Integration berechnen. Hier ist die Schritt-für-Schritt-Lösung: Setze: - \(u = (\ln x)^2\) ⇒ \(du = \frac{2... [mehr]
Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Um 102 durch 17 zu rechnen, teilst du 102 durch 17: 102 ÷ 17 = 6 Das Ergebnis ist 6.
Für lineare Funktionen gelten folgende Formeln und Definitionen bezüglich Wertemenge und Definitionsmenge: **1. Allgemeine Form einer linearen Funktion:** \[ f(x) = mx + b \] wobei \( m \)... [mehr]
Um die Berechnung durchzuführen, folge diesen Schritten: 1. Berechne die Wurzel von 54: \(\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}\) 2. Multipliziere das Ergebnis mit 6: \(3\sqrt{6}... [mehr]
Überschlagsrechnungen sind eine nützliche Methode, um schnell eine ungefähre Vorstellung von einem Ergebnis zu bekommen, ohne genaue Berechnungen durchführen zu müssen. Hier s... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]