Es sieht so aus, als wolltest du nach Prozentrechnung fragen. Prozentrechnung ist ein mathematisches Verfahren, um Anteile von einem Ganzen zu berechnen. Hier die wichtigsten Grundlagen: 1. **Prozent... [mehr]
Die Definitionsmenge einer Funktion ist die Menge aller Werte, für die die Funktion definiert ist. Um die Definitionsmenge zu bestimmen, gehst du in der Regel wie folgt vor: 1. **Identifikation der Funktion**: Bestimme die Funktion, für die du die Definitionsmenge finden möchtest. 2. **Überprüfung auf Einschränkungen**: Analysiere die Funktion auf mögliche Einschränkungen: - **Division durch Null**: Wenn die Funktion einen Bruch enthält, stelle sicher, dass der Nenner nicht null wird. - **Wurzel aus negativen Zahlen**: Bei Wurzeln (insbesondere Quadratwurzeln) darf der Ausdruck unter der Wurzel nicht negativ sein. - **Logarithmen**: Der Logarithmus ist nur für positive Werte definiert. 3. **Zusammenstellung der Bedingungen**: Formuliere die Bedingungen, die die Werte erfüllen müssen, um in der Definitionsmenge zu sein. 4. **Bestimmung der Definitionsmenge**: Setze die Bedingungen zusammen, um die Definitionsmenge in Intervallnotation oder als Menge anzugeben. Beispiel: Für die Funktion \( f(x) = \frac{1}{x-2} \) ist die Definitionsmenge \( D = \mathbb{R} \setminus \{2\} \), da \( x \) nicht 2 sein darf, um eine Division durch Null zu vermeiden.
Es sieht so aus, als wolltest du nach Prozentrechnung fragen. Prozentrechnung ist ein mathematisches Verfahren, um Anteile von einem Ganzen zu berechnen. Hier die wichtigsten Grundlagen: 1. **Prozent... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Das Integral von \((\ln x)^2\) bezüglich \(x\) kannst du mit partieller Integration berechnen. Hier ist die Schritt-für-Schritt-Lösung: Setze: - \(u = (\ln x)^2\) ⇒ \(du = \frac{2... [mehr]
Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]