Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Um das Verhalten einer Funktion in den Umgebungen ihrer Definitionslücken zu bestimmen, gehst du wie folgt vor: 1. **Identifiziere die Definitionslücken**: Finde die Werte von \( x \), für die die Funktion nicht definiert ist. Diese können durch Nullstellen des Nenners in gebrochenen Funktionen oder durch andere Einschränkungen wie Wurzeln von negativen Zahlen in reellen Funktionen entstehen. 2. **Untersuche das Verhalten in der Nähe der Definitionslücken**: - **Grenzwerte berechnen**: Bestimme die Grenzwerte der Funktion, wenn \( x \) sich den Definitionslücken von links (\( x \to a^- \)) und von rechts (\( x \to a^+ \)) nähert. Dies hilft zu verstehen, ob die Funktion gegen unendlich geht, gegen einen bestimmten Wert konvergiert oder oszilliert. - **Einseitige Grenzwerte**: Berechne die einseitigen Grenzwerte, um zu sehen, ob die Funktion unterschiedliche Werte annimmt, wenn sie sich der Definitionslücke von verschiedenen Seiten nähert. 3. **Typ der Definitionslücke bestimmen**: - **Hebbare Lücke**: Wenn der Grenzwert existiert und endlich ist, aber die Funktion an dieser Stelle nicht definiert ist, handelt es sich um eine hebbare Lücke. - **Polstelle**: Wenn der Grenzwert unendlich ist (die Funktion geht gegen unendlich), handelt es sich um eine Polstelle. - **Sprungstelle**: Wenn die einseitigen Grenzwerte existieren, aber unterschiedlich sind, handelt es sich um eine Sprungstelle. 4. **Verhalten grafisch darstellen**: Zeichne den Graphen der Funktion in der Nähe der Definitionslücken, um das Verhalten visuell zu überprüfen. Ein Beispiel: Betrachte die Funktion \( f(x) = \frac{1}{x-2} \). - **Definitionslücke**: \( x = 2 \) (da der Nenner null wird). - **Grenzwerte**: - \( \lim_{x \to 2^-} \frac{1}{x-2} = -\infty \) - \( \lim_{x \to 2^+} \frac{1}{x-2} = \infty \) - **Typ der Definitionslücke**: Polstelle, da die Grenzwerte unendlich sind. Durch diese Schritte kannst du das Verhalten der Funktion in den Umgebungen ihrer Definitionslücken systematisch bestimmen.
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]