Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um zu zeigen, dass die Funktion \( f(x) = x^4 - 8x^2 + 16 \) die angegebenen Tief- und Hochpunkte hat, müssen wir die ersten und zweiten Ableitungen der Funktion berechnen und analysieren. 1. **Erste Ableitung**: \[ f'(x) = \frac{d}{dx}(x^4 - 8x^2 + 16) = 4x^3 - 16x \] Um die kritischen Punkte zu finden, setzen wir die erste Ableitung gleich null: \[ 4x^3 - 16x = 0 \] Faktorisieren ergibt: \[ 4x(x^2 - 4) = 0 \] Das führt zu: \[ 4x(x - 2)(x + 2) = 0 \] Die Lösungen sind: \[ x = 0, \quad x = 2, \quad x = -2 \] 2. **Zweite Ableitung**: \[ f''(x) = \frac{d}{dx}(4x^3 - 16x) = 12x^2 - 16 \] Um die Art der kritischen Punkte zu bestimmen, setzen wir die zweite Ableitung an den kritischen Punkten ein. - Für \( x = -2 \): \[ f''(-2) = 12(-2)^2 - 16 = 12 \cdot 4 - 16 = 48 - 16 = 32 \quad (\text{positiv} \Rightarrow \text{Tiefpunkt}) \] - Für \( x = 0 \): \[ f''(0) = 12(0)^2 - 16 = -16 \quad (\text{negativ} \Rightarrow \text{Hochpunkt}) \] - Für \( x = 2 \): \[ f''(2) = 12(2)^2 - 16 = 12 \cdot 4 - 16 = 48 - 16 = 32 \quad (\text{positiv} \Rightarrow \text{Tiefpunkt}) \] 3. **Funktionswerte an den kritischen Punkten**: - Für \( x = -2 \): \[ f(-2) = (-2)^4 - 8(-2)^2 + 16 = 16 - 32 + 16 = 0 \quad (T1(-2, 0)) \] - Für \( x = 0 \): \[ f(0) = 0^4 - 8 \cdot 0^2 + 16 = 16 \quad (H(0, 16)) \] - Für \( x = 2 \): \[ f(2) = 2^4 - 8 \cdot 2^2 + 16 = 16 - 32 + 16 = 0 \quad (T2(2, 0)) \] Zusammenfassend hat die Funktion \( f(x) = x^4 - 8x^2 + 16 \) die Tiefpunkte \( T1(-2, 0) \) und \( T2(2, 0) \) sowie den Hochpunkt \( H(0, 16) \).
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]