Beweise rechnerisch, dass f(x) = x^4 - 8x^2 + 16 die Tiefpunkte T1(-2/0) und T2(2/0) sowie den Hochpunkt H(0/16) hat.

Antwort

Um zu zeigen, dass die Funktion \( f(x) = x^4 - 8x^2 + 16 \) die angegebenen Tief- und Hochpunkte hat, müssen wir die ersten und zweiten Ableitungen der Funktion berechnen und analysieren. 1. **Erste Ableitung**: \[ f'(x) = \frac{d}{dx}(x^4 - 8x^2 + 16) = 4x^3 - 16x \] Um die kritischen Punkte zu finden, setzen wir die erste Ableitung gleich null: \[ 4x^3 - 16x = 0 \] Faktorisieren ergibt: \[ 4x(x^2 - 4) = 0 \] Das führt zu: \[ 4x(x - 2)(x + 2) = 0 \] Die Lösungen sind: \[ x = 0, \quad x = 2, \quad x = -2 \] 2. **Zweite Ableitung**: \[ f''(x) = \frac{d}{dx}(4x^3 - 16x) = 12x^2 - 16 \] Um die Art der kritischen Punkte zu bestimmen, setzen wir die zweite Ableitung an den kritischen Punkten ein. - Für \( x = -2 \): \[ f''(-2) = 12(-2)^2 - 16 = 12 \cdot 4 - 16 = 48 - 16 = 32 \quad (\text{positiv} \Rightarrow \text{Tiefpunkt}) \] - Für \( x = 0 \): \[ f''(0) = 12(0)^2 - 16 = -16 \quad (\text{negativ} \Rightarrow \text{Hochpunkt}) \] - Für \( x = 2 \): \[ f''(2) = 12(2)^2 - 16 = 12 \cdot 4 - 16 = 48 - 16 = 32 \quad (\text{positiv} \Rightarrow \text{Tiefpunkt}) \] 3. **Funktionswerte an den kritischen Punkten**: - Für \( x = -2 \): \[ f(-2) = (-2)^4 - 8(-2)^2 + 16 = 16 - 32 + 16 = 0 \quad (T1(-2, 0)) \] - Für \( x = 0 \): \[ f(0) = 0^4 - 8 \cdot 0^2 + 16 = 16 \quad (H(0, 16)) \] - Für \( x = 2 \): \[ f(2) = 2^4 - 8 \cdot 2^2 + 16 = 16 - 32 + 16 = 0 \quad (T2(2, 0)) \] Zusammenfassend hat die Funktion \( f(x) = x^4 - 8x^2 + 16 \) die Tiefpunkte \( T1(-2, 0) \) und \( T2(2, 0) \) sowie den Hochpunkt \( H(0, 16) \).

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]

Was ist der Mittelwertsatz für f(x) = -1/3x^3 + 1/4x^2 + 3x + 2?

Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]

Welche Werte haben a, d und e in der Funktion f(x) = a(x-d)(x-e)?

Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Zum Beispiel wären spezifische Punkte, durch die die Funktion... [mehr]