Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Um zu zeigen, dass die Funktion \( f(x) = x^4 - 8x^2 + 16 \) die angegebenen Tief- und Hochpunkte hat, müssen wir die ersten und zweiten Ableitungen der Funktion berechnen und analysieren. 1. **Erste Ableitung**: \[ f'(x) = \frac{d}{dx}(x^4 - 8x^2 + 16) = 4x^3 - 16x \] Um die kritischen Punkte zu finden, setzen wir die erste Ableitung gleich null: \[ 4x^3 - 16x = 0 \] Faktorisieren ergibt: \[ 4x(x^2 - 4) = 0 \] Das führt zu: \[ 4x(x - 2)(x + 2) = 0 \] Die Lösungen sind: \[ x = 0, \quad x = 2, \quad x = -2 \] 2. **Zweite Ableitung**: \[ f''(x) = \frac{d}{dx}(4x^3 - 16x) = 12x^2 - 16 \] Um die Art der kritischen Punkte zu bestimmen, setzen wir die zweite Ableitung an den kritischen Punkten ein. - Für \( x = -2 \): \[ f''(-2) = 12(-2)^2 - 16 = 12 \cdot 4 - 16 = 48 - 16 = 32 \quad (\text{positiv} \Rightarrow \text{Tiefpunkt}) \] - Für \( x = 0 \): \[ f''(0) = 12(0)^2 - 16 = -16 \quad (\text{negativ} \Rightarrow \text{Hochpunkt}) \] - Für \( x = 2 \): \[ f''(2) = 12(2)^2 - 16 = 12 \cdot 4 - 16 = 48 - 16 = 32 \quad (\text{positiv} \Rightarrow \text{Tiefpunkt}) \] 3. **Funktionswerte an den kritischen Punkten**: - Für \( x = -2 \): \[ f(-2) = (-2)^4 - 8(-2)^2 + 16 = 16 - 32 + 16 = 0 \quad (T1(-2, 0)) \] - Für \( x = 0 \): \[ f(0) = 0^4 - 8 \cdot 0^2 + 16 = 16 \quad (H(0, 16)) \] - Für \( x = 2 \): \[ f(2) = 2^4 - 8 \cdot 2^2 + 16 = 16 - 32 + 16 = 0 \quad (T2(2, 0)) \] Zusammenfassend hat die Funktion \( f(x) = x^4 - 8x^2 + 16 \) die Tiefpunkte \( T1(-2, 0) \) und \( T2(2, 0) \) sowie den Hochpunkt \( H(0, 16) \).
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]