Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Ja, es gibt eine solche Funktion. Ein Beispiel ist die Funktion \( g: \mathbb{R} \to \mathbb{R} \), definiert durch: \[ g(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{für } x \neq 0, \\ 0 & \text{für } x = 0. \end{cases} \] Diese Funktion ist im Nullpunkt differenzierbar und damit auch stetig, aber sie ist in keinem anderen Punkt stetig. Um dies zu zeigen: 1. **Stetigkeit im Nullpunkt:** \[ \lim_{x \to 0} g(x) = \lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0 = g(0). \] Da der Grenzwert von \( g(x) \) bei \( x \to 0 \) gleich dem Funktionswert \( g(0) \) ist, ist \( g \) im Nullpunkt stetig. 2. **Differenzierbarkeit im Nullpunkt:** Der Differenzenquotient für \( g \) im Nullpunkt ist: \[ \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{h}\right)}{h} = \lim_{h \to 0} h \sin\left(\frac{1}{h}\right). \] Da \( \sin\left(\frac{1}{h}\right) \) zwischen -1 und 1 schwankt, ergibt sich: \[ -|h| \leq h \sin\left(\frac{1}{h}\right) \leq |h|. \] Da \( \lim_{h \to 0} |h| = 0 \), folgt aus dem Sandwich-Theorem: \[ \lim_{h \to 0} h \sin\left(\frac{1}{h}\right) = 0. \] Somit ist \( g \) im Nullpunkt differenzierbar mit \( g'(0) = 0 \). 3. **Unstetigkeit an anderen Punkten:** Für \( x \neq 0 \) oszilliert \( \sin\left(\frac{1}{x}\right) \) unbeschränkt zwischen -1 und 1, was bedeutet, dass \( g(x) = x^2 \sin\left(\frac{1}{x}\right) \) keine eindeutigen Grenzwerte hat, wenn man sich \( x \) nähert. Daher ist \( g \) in keinem anderen Punkt stetig. Diese Funktion erfüllt also die Bedingungen: Sie ist im Nullpunkt differenzierbar und damit auch stetig, aber in keinem anderen Punkt stetig.
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]
Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]
Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Zum Beispiel wären spezifische Punkte, durch die die Funktion... [mehr]