Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Ja, es gibt eine solche Funktion. Ein Beispiel ist die Funktion \( g: \mathbb{R} \to \mathbb{R} \), definiert durch: \[ g(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{für } x \neq 0, \\ 0 & \text{für } x = 0. \end{cases} \] Diese Funktion ist im Nullpunkt differenzierbar und damit auch stetig, aber sie ist in keinem anderen Punkt stetig. Um dies zu zeigen: 1. **Stetigkeit im Nullpunkt:** \[ \lim_{x \to 0} g(x) = \lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0 = g(0). \] Da der Grenzwert von \( g(x) \) bei \( x \to 0 \) gleich dem Funktionswert \( g(0) \) ist, ist \( g \) im Nullpunkt stetig. 2. **Differenzierbarkeit im Nullpunkt:** Der Differenzenquotient für \( g \) im Nullpunkt ist: \[ \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{h}\right)}{h} = \lim_{h \to 0} h \sin\left(\frac{1}{h}\right). \] Da \( \sin\left(\frac{1}{h}\right) \) zwischen -1 und 1 schwankt, ergibt sich: \[ -|h| \leq h \sin\left(\frac{1}{h}\right) \leq |h|. \] Da \( \lim_{h \to 0} |h| = 0 \), folgt aus dem Sandwich-Theorem: \[ \lim_{h \to 0} h \sin\left(\frac{1}{h}\right) = 0. \] Somit ist \( g \) im Nullpunkt differenzierbar mit \( g'(0) = 0 \). 3. **Unstetigkeit an anderen Punkten:** Für \( x \neq 0 \) oszilliert \( \sin\left(\frac{1}{x}\right) \) unbeschränkt zwischen -1 und 1, was bedeutet, dass \( g(x) = x^2 \sin\left(\frac{1}{x}\right) \) keine eindeutigen Grenzwerte hat, wenn man sich \( x \) nähert. Daher ist \( g \) in keinem anderen Punkt stetig. Diese Funktion erfüllt also die Bedingungen: Sie ist im Nullpunkt differenzierbar und damit auch stetig, aber in keinem anderen Punkt stetig.
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die Funktion \( g(x) = |x-1| + |x-2| \) ist **nicht überall differenzierbar**. **Begründung:** Der Ausdruck \( |x-a| \) ist an der Stelle \( x = a \) **nicht differenzierbar**, da dort ein... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]