Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Ja, es gibt eine solche Funktion. Ein Beispiel ist die Funktion \( g: \mathbb{R} \to \mathbb{R} \), definiert durch: \[ g(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{für } x \neq 0, \\ 0 & \text{für } x = 0. \end{cases} \] Diese Funktion ist im Nullpunkt differenzierbar und damit auch stetig, aber sie ist in keinem anderen Punkt stetig. Um dies zu zeigen: 1. **Stetigkeit im Nullpunkt:** \[ \lim_{x \to 0} g(x) = \lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0 = g(0). \] Da der Grenzwert von \( g(x) \) bei \( x \to 0 \) gleich dem Funktionswert \( g(0) \) ist, ist \( g \) im Nullpunkt stetig. 2. **Differenzierbarkeit im Nullpunkt:** Der Differenzenquotient für \( g \) im Nullpunkt ist: \[ \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{h}\right)}{h} = \lim_{h \to 0} h \sin\left(\frac{1}{h}\right). \] Da \( \sin\left(\frac{1}{h}\right) \) zwischen -1 und 1 schwankt, ergibt sich: \[ -|h| \leq h \sin\left(\frac{1}{h}\right) \leq |h|. \] Da \( \lim_{h \to 0} |h| = 0 \), folgt aus dem Sandwich-Theorem: \[ \lim_{h \to 0} h \sin\left(\frac{1}{h}\right) = 0. \] Somit ist \( g \) im Nullpunkt differenzierbar mit \( g'(0) = 0 \). 3. **Unstetigkeit an anderen Punkten:** Für \( x \neq 0 \) oszilliert \( \sin\left(\frac{1}{x}\right) \) unbeschränkt zwischen -1 und 1, was bedeutet, dass \( g(x) = x^2 \sin\left(\frac{1}{x}\right) \) keine eindeutigen Grenzwerte hat, wenn man sich \( x \) nähert. Daher ist \( g \) in keinem anderen Punkt stetig. Diese Funktion erfüllt also die Bedingungen: Sie ist im Nullpunkt differenzierbar und damit auch stetig, aber in keinem anderen Punkt stetig.
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die Funktion \( g(x) = |x-1| + |x-2| \) ist **nicht überall differenzierbar**. **Begründung:** Der Ausdruck \( |x-a| \) ist an der Stelle \( x = a \) **nicht differenzierbar**, da dort ein... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]