Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Eine ganzrationale Funktion 5. Grades hat die allgemeine Form: \[ f(x) = a \cdot (x - x_1) \cdot (x - x_2) \cdot (x - x_3) \cdot (x - x_4) \cdot (x - x_5) \] Dabei sind \( x_1, x_2, x_3, x_4 \) und \( x_5 \) die Nullstellen der Funktion und \( a \) ist ein konstanter Vorfaktor. Wenn die Funktion drei Nullstellen hat, bedeutet das, dass zwei der Nullstellen mehrfach vorkommen müssen, da eine Funktion 5. Grades insgesamt fünf Nullstellen (einschließlich ihrer Vielfachheit) haben muss. Ein möglicher Funktionsterm könnte daher wie folgt aussehen: \[ f(x) = a \cdot (x - x_1) \cdot (x - x_2) \cdot (x - x_3)^3 \] Hierbei sind \( x_1, x_2 \) und \( x_3 \) die drei Nullstellen, wobei \( x_3 \) eine dreifache Nullstelle ist. Ein konkretes Beispiel wäre: \[ f(x) = 1 \cdot (x - 1) \cdot (x + 2) \cdot (x - 3)^3 \] Das ergibt: \[ f(x) = (x - 1) \cdot (x + 2) \cdot (x - 3)^3 \] Dies ist ein möglicher Funktionsterm für eine ganzrationale Funktion 5. Grades mit drei Nullstellen.
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]
Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]
Um die Nullstellen der Funktion \( f(x) = x^3 + 4x^2 + 3x \) zu berechnen, setzt man die Funktion gleich null: \[ x^3 + 4x^2 + 3x = 0 \] Zuerst kann man \( x \) ausklammern: \[ x(x^2 + 4x + 3) = 0... [mehr]