Die Unterschiede in der Kurvenerzeugung zwischen der Parabel \( y = x^2 \) und dem Kreis \( y = \sqrt{r^2 - x^2} \) liegen in den Prinzipien der klassischen euklidischen Geometrie, wie sie Euklid in s... [mehr]
Um die Funktion \( y = x^2 - x + 12 \) in Scheitelform zu bringen, verwenden wir die Methode der quadratischen Ergänzung. 1. Beginne mit der Funktion: \[ y = x^2 - x + 12 \] 2. Nimm die Koeffizienten des quadratischen Terms und des linearen Terms: - Der Koeffizient von \( x \) ist \(-1\). 3. Teile diesen Koeffizienten durch 2 und quadriere das Ergebnis: \[ \left(-\frac{1}{2}\right)^2 = \frac{1}{4} \] 4. Füge und subtrahiere diesen Wert in der Gleichung: \[ y = \left(x^2 - x + \frac{1}{4}\right) + 12 - \frac{1}{4} \] 5. Schreibe die quadratische Ergänzung als Quadrat: \[ y = \left(x - \frac{1}{2}\right)^2 + \frac{47}{4} \] Die Scheitelform der Funktion ist somit: \[ y = \left(x - \frac{1}{2}\right)^2 + \frac{47}{4} \] Hierbei ist der Scheitelpunkt \( \left(\frac{1}{2}, \frac{47}{4}\right) \).
Die Unterschiede in der Kurvenerzeugung zwischen der Parabel \( y = x^2 \) und dem Kreis \( y = \sqrt{r^2 - x^2} \) liegen in den Prinzipien der klassischen euklidischen Geometrie, wie sie Euklid in s... [mehr]
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Gegeben ist, dass die Parabel die x-Achse bei \( x = -2 \) und \( x = 4 \) schneidet. Das bedeutet, die Nullstellen der Parabel sind \( x_1 = -2 \) und \( x_2 = 4 \). Die allgemeine Form einer Parabe... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]