Wie können Funktionen auf Stetigkeit geprüft werden?

Antwort

Um die Stetigkeit einer Funktion zu prüfen, kannst du folgende Schritte durchführen: 1. **Definitionsbereich überprüfen**: Stelle sicher, dass die Funktion an dem Punkt, an dem du die Stetigkeit prüfen möchtest, definiert ist. 2. **Grenzwert bestimmen**: Berechne den Grenzwert der Funktion, wenn sich die Eingangsvariable dem Punkt nähert, an dem du die Stetigkeit prüfen möchtest. Das bedeutet, du musst den Grenzwert von links (lim x→c-) und von rechts (lim x→c+) betrachten. 3. **Funktionswert prüfen**: Bestimme den Funktionswert an dem Punkt, also f(c). 4. **Vergleich der Werte**: Die Funktion ist stetig an dem Punkt c, wenn die folgenden Bedingungen erfüllt sind: - Der Funktionswert f(c) ist definiert. - Der Grenzwert lim x→c f(x) existiert. - Der Grenzwert ist gleich dem Funktionswert: lim x→c f(x) = f(c). Wenn alle drei Bedingungen erfüllt sind, ist die Funktion an diesem Punkt stetig. Andernfalls ist sie nicht stetig.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie bestimmt man das Monotonieverhalten?

Um das Monotonieverhalten einer Funktion zu bestimmen, folge diesen Schritten: 1. **Ableitung bilden**: Berechne die erste Ableitung der Funktion \( f(x) \). 2. **Nullstellen der Ableitung finden**:... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]

Was ist der Mittelwertsatz für f(x) = -1/3x^3 + 1/4x^2 + 3x + 2?

Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]