Äquivalenzumformungen sind Umformungen von Gleichungen oder Ungleichungen, bei denen die Lösungsmenge erhalten bleibt. Das Ziel ist, die Gleichung so umzuformen, dass sie leichter zu lö... [mehr]
Um die Gleichung \( \sin^4(x) - \sin^2(x) + \frac{\sqrt{3}}{2} + 1 = 0 \) zu vereinfachen, kannst du eine Substitution verwenden. Setze \( y = \sin^2(x) \). Dann wird die Gleichung zu: \[ y^2 - y + \frac{\sqrt{3}}{2} + 1 = 0 \] Das vereinfacht sich zu: \[ y^2 - y + \left(1 + \frac{\sqrt{3}}{2}\right) = 0 \] Berechne den konstanten Term: \[ 1 + \frac{\sqrt{3}}{2} = \frac{2}{2} + \frac{\sqrt{3}}{2} = \frac{2 + \sqrt{3}}{2} \] Somit lautet die Gleichung: \[ y^2 - y + \frac{2 + \sqrt{3}}{2} = 0 \] Um die Lösungen für \( y \) zu finden, kannst du die Mitternachtsformel (quadratische Formel) anwenden: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Hier ist \( a = 1 \), \( b = -1 \) und \( c = \frac{2 + \sqrt{3}}{2} \). Setze diese Werte in die Formel ein: \[ y = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot \frac{2 + \sqrt{3}}{2}}}{2 \cdot 1} \] Berechne den Diskriminanten: \[ 1 - 2(2 + \sqrt{3}) = 1 - 4 - 2\sqrt{3} = -3 - 2\sqrt{3} \] Da der Diskriminant negativ ist, hat die Gleichung keine reellen Lösungen. Das bedeutet, dass die ursprüngliche Gleichung keine reellen Werte für \( x \) hat, die sie erfüllen.
Äquivalenzumformungen sind Umformungen von Gleichungen oder Ungleichungen, bei denen die Lösungsmenge erhalten bleibt. Das Ziel ist, die Gleichung so umzuformen, dass sie leichter zu lö... [mehr]
Die Gleichung lautet: \( 3x + 7 - 5x - 1 = 0 \) **1. Äquivalenzumformungen:** Zuerst gleichartige Terme zusammenfassen: \( 3x - 5x + 7 - 1 = 0 \) \( -2x + 6 = 0 \) Nun die Gleichung nach... [mehr]
Eine Äquivalenzumformung ist eine Umformung einer mathematischen Gleichung oder Aussage, bei der die Lösungsmenge unverändert bleibt. Das bedeutet, dass die ursprüngliche Gleichung... [mehr]
Wenn für einen Winkel \(\alpha\) gilt, dass \(\sin(\alpha) > 0\) und \(\cos(\alpha) < 0\), dann befindet sich \(\alpha\) im **zweiten Quadranten** des Einheitskreises. **Begründung:**... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Um den Ausdruck \((0,75a + 0,5)^2\) zu vereinfachen, kannst du die binomische Formel \((x + y)^2 = x^2 +2xy + y2\) anwenden. Hier ist \(x = 0,75a\) und \(y = 0,5\). 1. Berechne \(x^2\): \[ (0,7... [mehr]
Um passende Gleichungen zu Aussagen zu finden, ist es wichtig, den Kontext der Aussagen zu kennen. Hier sind einige allgemeine Beispiele: 1. **Aussage:** "Die Summe von x und 5 ist 12."... [mehr]
Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]