Wie vereinfacht man die Gleichung sin^4(x) - sin^2(x) + (sqrt(3)/2) + 1 = 0?

Antwort

Um die Gleichung \( \sin^4(x) - \sin^2(x) + \frac{\sqrt{3}}{2} + 1 = 0 \) zu vereinfachen, kannst du eine Substitution verwenden. Setze \( y = \sin^2(x) \). Dann wird die Gleichung zu: \[ y^2 - y + \frac{\sqrt{3}}{2} + 1 = 0 \] Das vereinfacht sich zu: \[ y^2 - y + \left(1 + \frac{\sqrt{3}}{2}\right) = 0 \] Berechne den konstanten Term: \[ 1 + \frac{\sqrt{3}}{2} = \frac{2}{2} + \frac{\sqrt{3}}{2} = \frac{2 + \sqrt{3}}{2} \] Somit lautet die Gleichung: \[ y^2 - y + \frac{2 + \sqrt{3}}{2} = 0 \] Um die Lösungen für \( y \) zu finden, kannst du die Mitternachtsformel (quadratische Formel) anwenden: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Hier ist \( a = 1 \), \( b = -1 \) und \( c = \frac{2 + \sqrt{3}}{2} \). Setze diese Werte in die Formel ein: \[ y = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot \frac{2 + \sqrt{3}}{2}}}{2 \cdot 1} \] Berechne den Diskriminanten: \[ 1 - 2(2 + \sqrt{3}) = 1 - 4 - 2\sqrt{3} = -3 - 2\sqrt{3} \] Da der Diskriminant negativ ist, hat die Gleichung keine reellen Lösungen. Das bedeutet, dass die ursprüngliche Gleichung keine reellen Werte für \( x \) hat, die sie erfüllen.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie führt man Äquivalenzumformungen durch?

Äquivalenzumformungen sind Umformungen von Gleichungen oder Ungleichungen, bei denen die Lösungsmenge erhalten bleibt. Das Ziel ist, die Gleichung so umzuformen, dass sie leichter zu lö... [mehr]

Löse die Gleichung 3x + 7 - 5x - 1 = 0 mit Äquivalenzumformungen und rechne die Probe.

Die Gleichung lautet: \( 3x + 7 - 5x - 1 = 0 \) **1. Äquivalenzumformungen:** Zuerst gleichartige Terme zusammenfassen: \( 3x - 5x + 7 - 1 = 0 \) \( -2x + 6 = 0 \) Nun die Gleichung nach... [mehr]

Was ist eine Äquivalenzumformung?

Eine Äquivalenzumformung ist eine Umformung einer mathematischen Gleichung oder Aussage, bei der die Lösungsmenge unverändert bleibt. Das bedeutet, dass die ursprüngliche Gleichung... [mehr]

In welchem Quadranten liegt Winkel alpha, wenn sin(alpha) > 0 und cos(alpha) < 0?

Wenn für einen Winkel \(\alpha\) gilt, dass \(\sin(\alpha) > 0\) und \(\cos(\alpha) < 0\), dann befindet sich \(\alpha\) im **zweiten Quadranten** des Einheitskreises. **Begründung:**... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Binomische Formeln?

Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]

(0,75a + 0,5)²?

Um den Ausdruck \((0,75a + 0,5)^2\) zu vereinfachen, kannst du die binomische Formel \((x + y)^2 = x^2 +2xy + y2\) anwenden. Hier ist \(x = 0,75a\) und \(y = 0,5\). 1. Berechne \(x^2\): \[ (0,7... [mehr]

Finde passende Gleichungen zu Aussagen.

Um passende Gleichungen zu Aussagen zu finden, ist es wichtig, den Kontext der Aussagen zu kennen. Hier sind einige allgemeine Beispiele: 1. **Aussage:** "Die Summe von x und 5 ist 12."... [mehr]

Wie lautet die Gleichung der Symmetriachse des Graphen von g?

Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]