Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Der korrekte mathematische Ausdruck wäre nicht „eine Gleichung in ein unbestimmtes Integral transferieren“. Stattdessen spricht man davon, eine Funktion zu **integrieren** oder das **unbestimmte Integral** einer Funktion zu bestimmen. Das Ergebnis ist dann die **Stammfunktion**. Wenn du zum Beispiel die Gleichung \( f(x) = 2x \) hast, dann kannst du das unbestimmte Integral von \( f(x) \) berechnen, also \( \int 2x \, dx = x^2 + C \), wobei \( C \) die Integrationskonstante ist. Man sagt also: - „Die Funktion \( f(x) \) integrieren“ - „Das unbestimmte Integral von \( f(x) \) bestimmen“ - „Die Stammfunktion von \( f(x) \) berechnen“ Der Begriff „transferieren“ wird in diesem Zusammenhang nicht verwendet.
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Die Gleichung „ein halb mal X gleich 50“ kannst du mathematisch so aufschreiben: \[\frac{1}{2} \cdot x = 50\] Das ist die gesuchte Gleichung.
Das unbestimmte Integral von \( x \) bezüglich \( x \) lautet: \[ \int x \, dx = \frac{1}{2}x^2 + C \] wobei \( C \) die Integrationskonstante ist.
Um von der Gleichung \( 8 = \frac{1}{3^x} \) auf \( x^3 = \frac{1}{8} \) zu kommen, musst du die Gleichung so umformen, dass \( x \) isoliert wird und dann beide Seiten umstellen. Hier ist der Rechenw... [mehr]
Gegeben ist das Integral: \[ \int_{0}^{0{,}25} \frac{dx}{\sqrt{x} \cdot (1 - \sqrt{x})} \] Um das Integral zu lösen, bietet sich die Substitution \( u = \sqrt{x} \) an. **Schritt 1: Substituti... [mehr]
Das Integral von \((\ln x)^2\) bezüglich \(x\) kannst du mit partieller Integration berechnen. Hier ist die Schritt-für-Schritt-Lösung: Setze: - \(u = (\ln x)^2\) ⇒ \(du = \frac{2... [mehr]
Um den Ausdruck \( 1a : (2^{-1/2} \cdot a + 1^{-1/2}) \) nach \( a \) aufzulösen, muss zunächst klar sein, was genau gemeint ist. Ich gehe davon aus, dass du die Gleichung \[ \frac{a}{2^{-1... [mehr]