Der sechste Teil von 2100 ist 350. Berechnung: 2100 ÷ 6 = 350
\[ (5/7)^{17} \times (7/5)^{19} \] Zuerst kannst du die Potenzen zusammenfassen: \[ = (5/7)^{17} \times (7/5)^{19} = (5/7)^{17} \times (7/5)^{19} \] Das ist das gleiche wie: \[ = (5/7)^{17} \times (7/5)^{19} = (5/7)^{17} \times (7/5)^{17} \times (7/5)^{2} \] Da \((5/7)^{17} \times (7/5)^{17} = 1\): \[ = 1 \times (7/5)^2 = (7/5)^2 = 49/25 \] **Vereinfacht ergibt der Ausdruck:** \[ \boxed{\dfrac{49}{25}} \]
Der sechste Teil von 2100 ist 350. Berechnung: 2100 ÷ 6 = 350
Um den 10. Teil von 2100 zu berechnen, teilst du 2100 durch 10: 2100 ÷ 10 = 210 Der 10. Teil von 2100 ist also **210**.
Der 0,6-te Teil von 2100 ist 1260. Berechnung: 2100 × 0,6 = 1260
Die Rechenaufgabe **540 : 9 : 12** kannst du kürzer als **540 : (9 × 12)** oder **540 : 108** darstellen. Das bedeutet: 540 geteilt durch 9 und das Ergebnis nochmal geteilt durch 12 ist... [mehr]
Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]
Der Ausdruck \( (y+1) \cdot (y-1) \) lässt sich mit der binomischen Formel vereinfachen: \[ (y+1) \cdot (y-1) = y^2 - 1 \] Das ist die Differenz zweier Quadrate.
Um den Ausdruck \((5-a) \cdot (12a-5b)\) zu multiplizieren, verwenden wir die distributive Eigenschaft (auch bekannt als das Ausmultiplizieren). 1. Multipliziere \(5\) mit beiden Termen in der zweit... [mehr]