Die Unterschiede in der Kurvenerzeugung zwischen der Parabel \( y = x^2 \) und dem Kreis \( y = \sqrt{r^2 - x^2} \) liegen in den Prinzipien der klassischen euklidischen Geometrie, wie sie Euklid in s... [mehr]
Um die Scheitelpunktform einer Funktion \( f(x) = a(x - h)^2 + k \) zu bestimmen, müssen wir die gegebene Funktion in diese Form umwandeln. Dies geschieht in der Regel durch das Ausmultiplizieren und anschließende Zusammenfassen der Terme oder durch die Anwendung der quadratischen Ergänzung. Hier sind die Schritte für die angegebenen Funktionen: a) \( f(x) = (x + 2)(x - 6) \) 1. Multipliziere die Terme aus: \[ f(x) = x^2 - 6x + 2x - 12 = x^2 - 4x - 12 \] 2. Finde den Scheitelpunkt durch quadratische Ergänzung: \[ f(x) = x^2 - 4x - 12 = (x^2 - 4x + 4) - 4 - 12 = (x - 2)^2 - 16 \] 3. Scheitelpunktform: \[ f(x) = (x - 2)^2 - 16 \] b) \( f(x) = 2.5(x - 1)(x - 5) \) 1. Multipliziere die Terme aus: \[ f(x) = 2.5(x^2 - 5x - x + 5) = 2.5(x^2 - 6x + 5) = 2.5x^2 - 15x + 12.5 \] 2. Finde den Scheitelpunkt durch quadratische Ergänzung: \[ f(x) = 2.5(x^2 - 6x) + 12.5 = 2.5((x^2 - 6x + 9) - 9) + 12.5 = 2.5(x - 3)^2 - 22.5 + 12.5 \] 3. Scheitelpunktform: \[ f(x) = 2.5(x - 3)^2 - 10 \] c) \( f(x) = -3(x + 1.5)(x + 3.5) \) 1. Multipliziere die Terme aus: \[ f(x) = -3(x^2 + 3.5x + 1.5x + 5.25) = -3(x^2 + 5x + 5.25) = -3x^2 - 15x - 15.75 \] 2. Finde den Scheitelpunkt durch quadratische Ergänzung: \[ f(x) = -3(x^2 + 5x) - 15.75 = -3((x^2 + 5x + \frac{25}{4}) - \frac{25}{4}) - 15.75 \] \[ = -3\left((x + \frac{5}{2})^2 - \frac{25}{4}\right) - 15.75 = -3(x + \frac{5}{2})^2 + \frac{75}{4} - 15.75 \] \[ = -3(x + \frac{5}{2})^2 + \frac{75}{4} - \frac{63}{4} = -3(x + \frac{5}{2})^2 + 3 \] 3. Scheitelpunktform: \[ f(x) = -3(x + \frac{5}{2})^2 + 3 \] Zusammenfassend sind die Scheitelpunktformen: a) \( f(x) = (x - 2)^2 - 16 \) b) \( f(x) = 2.5(x - 3)^2 - 10 \) c) \( f(x) = -3(x + \frac{5}{2})^2 + 3 \)
Die Unterschiede in der Kurvenerzeugung zwischen der Parabel \( y = x^2 \) und dem Kreis \( y = \sqrt{r^2 - x^2} \) liegen in den Prinzipien der klassischen euklidischen Geometrie, wie sie Euklid in s... [mehr]
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Gegeben ist, dass die Parabel die x-Achse bei \( x = -2 \) und \( x = 4 \) schneidet. Das bedeutet, die Nullstellen der Parabel sind \( x_1 = -2 \) und \( x_2 = 4 \). Die allgemeine Form einer Parabe... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]