Warum haben manche ganzrationale Funktionen 4. Grades keine Nullstellen?

Antwort

Eine ganzrationale Funktion 4. Grades hat die allgemeine Form \( f(x) = ax^4 + bx^3 + cx^2 + dx + e \), wobei \( a, b, c, d \) und \( e \) reelle Koeffizienten sind und \( a \neq 0 \). Damit eine solche Funktion keine Nullstellen hat, muss sie entweder immer positiv oder immer negativ sein. Dies kann erreicht werden, wenn der führende Koeffizient \( a \) positiv ist und die Funktion keine reellen Nullstellen hat, oder wenn \( a \) negativ ist und die Funktion keine reellen Nullstellen hat. Ein Beispiel für eine solche Funktion ist \( f(x) = x^4 + 1 \). Hier ist der führende Koeffizient \( a = 1 \) (positiv) und die Funktion hat keine reellen Nullstellen, da \( x^4 \) immer nicht-negativ ist und \( x^4 + 1 \) somit immer positiv ist. Allgemein kann man sagen, dass eine ganzrationale Funktion 4. Grades keine Nullstellen hat, wenn sie in der Form \( f(x) = a(x^2 + bx + c)^2 + d \) geschrieben werden kann, wobei \( a > 0 \) und der Ausdruck \( (x^2 + bx + c)^2 + d \) immer positiv ist. Dies ist der Fall, wenn die Diskriminante des quadratischen Terms \( x^2 + bx + c \) negativ ist, sodass der quadratische Term keine reellen Nullstellen hat und somit immer positiv ist.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]

Durch welche Operationen wird eine Funktion f(x) entlang der x-Achse gestaucht oder gestreckt?

Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]

Was ist die Nullstelle einer Normalparabel und wie berechnet man sie?

Die Nullstelle einer Normalparabel ist der Punkt (bzw. die Punkte), an dem die Parabel die x-Achse schneidet. Mathematisch bedeutet das: Die Nullstelle ist der Wert von \( x \), für den \( f(x) =... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]