Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Eine ganzrationale Funktion 4. Grades hat die allgemeine Form \( f(x) = ax^4 + bx^3 + cx^2 + dx + e \), wobei \( a, b, c, d \) und \( e \) reelle Koeffizienten sind und \( a \neq 0 \). Damit eine solche Funktion keine Nullstellen hat, muss sie entweder immer positiv oder immer negativ sein. Dies kann erreicht werden, wenn der führende Koeffizient \( a \) positiv ist und die Funktion keine reellen Nullstellen hat, oder wenn \( a \) negativ ist und die Funktion keine reellen Nullstellen hat. Ein Beispiel für eine solche Funktion ist \( f(x) = x^4 + 1 \). Hier ist der führende Koeffizient \( a = 1 \) (positiv) und die Funktion hat keine reellen Nullstellen, da \( x^4 \) immer nicht-negativ ist und \( x^4 + 1 \) somit immer positiv ist. Allgemein kann man sagen, dass eine ganzrationale Funktion 4. Grades keine Nullstellen hat, wenn sie in der Form \( f(x) = a(x^2 + bx + c)^2 + d \) geschrieben werden kann, wobei \( a > 0 \) und der Ausdruck \( (x^2 + bx + c)^2 + d \) immer positiv ist. Dies ist der Fall, wenn die Diskriminante des quadratischen Terms \( x^2 + bx + c \) negativ ist, sodass der quadratische Term keine reellen Nullstellen hat und somit immer positiv ist.
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Die Nullstelle einer Normalparabel ist der Punkt (bzw. die Punkte), an dem die Parabel die x-Achse schneidet. Mathematisch bedeutet das: Die Nullstelle ist der Wert von \( x \), für den \( f(x) =... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]