Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die lineare Funktion \( g \) zu ermitteln, dieogonal zur Funktion \( f(x) = 4x + 4 \) verläuft und durch den Punkt \( Q(1, 1) \) geht, müssen wir zunächst die Steigung der Funktion \( f \) bestimmen. Die Steigung von \( f \) ist \( m_f = 4 \). Eine Funktion, die orthogonal zu \( f \) ist, hat eine negative reziproke Steigung. Das bedeutet, dass die Steigung \( m_g \) von \( g \) gegeben ist durch: \[ m_g = -\frac{1}{m_f} = -\frac{1}{4} \] Jetzt verwenden wir die Punkt-Steigungs-Form der Geradengleichung, um die Funktion \( g \) zu bestimmen. Die allgemeine Form lautet: \[ y - y_1 = m(x - x_1) \] Hierbei ist \( (x_1, y_1) = (1, 1) \) und \( m = -\frac{1}{4} \). Setzen wir die Werte ein: \[ y - 1 = -\frac{1}{4}(x - 1) \] Nun lösen wir die Gleichung nach \( y \) auf: \[ y - 1 = -\frac{1}{4}x + \frac{1}{4} \] \[ y = -\frac{1}{4}x + \frac{1}{4} + 1 \] \[ y = -\frac{1}{4}x + \frac{5}{4} \] Die gesuchte lineare Funktion \( g \) ist also: \[ g(x) = -\frac{1}{4}x + \frac{5}{4} \]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]
Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]
Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Zum Beispiel wären spezifische Punkte, durch die die Funktion... [mehr]