Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um den Limes von \((x) = (3 6^x \cdot 3^{-x} \) zu bestimmen, betrachten wir den Ausdruck genauer: \[ f(x) = (3 + 6^x) \cdot 3^{-x} = \frac{3 + 6^x}{3^x} \] Das lässt sich umschreiben als: \[ f(x) = \frac{3}{3^x} + \frac{6^x}{3^x} = \frac{3}{3^x} + \left(\frac{6}{3}\right)^x = \frac{3}{3^x} + 2^x \] Nun betrachten wir die beiden Terme einzeln, wenn \( x \) gegen unendlich geht: 1. Der erste Term \( \frac{3}{3^x} \) geht gegen 0, da \( 3^x \) exponentiell wächst. 2. Der zweite Term \( 2^x \) wächst ebenfalls exponentiell, und zwar schneller als \( \frac{3}{3^x} \) gegen 0. Somit ergibt sich: \[ \lim_{x \to \infty} f(x) = 0 + \infty = \infty \] Der Limes von \( f(x) \) für \( x \) gegen unendlich ist also: \[ \lim_{x \to \infty} f(x) = \infty \]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]
Um zu zeigen, dass \( e^x \) schneller wächst als \( x^n \) für jedes feste \( n \), kann man die Regel von l'Hôpital verwenden. Hier ist der Schritt-für-Schritt-Ansatz: 1.... [mehr]
Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]