Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Um die Kurvendiskussion der Funktion \( f(x) = 0,5x^3 - 3x^2 + 5x \) durchzuführen sind folgende Schritte notwendig: 1. **Definitionsbereich**: Die Funktion ist für alle reellen Zahlen definiert, also \( D = \mathbb{R} \). 2. **Ableitungen**: - Erste Ableitung \( f'(x) \): \[ f'(x) = \frac{d}{dx}(0,5x^3 - 3x^2 + 5x) = 1,5x^2 - 6x + 5 \] - Zweite Ableitung \( f''(x) \): \[ f''(x) = \frac{d}{dx}(1,5x^2 - 6x + 5) = 3x - 6 \] 3. **Extrempunkte**: Setze die erste Ableitung gleich null: \[ 1,5x^2 - 6x + 5 = 0 \] Verwende die Mitternachtsformel: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1,5 \cdot 5}}{2 \cdot 1,5} \] \[ = \frac{6 \pm \sqrt{36 - 30}}{3} = \frac{6 \pm \sqrt{6}}{3} \] \[ = 2 \pm \frac{\sqrt{6}}{3} \] Berechne die y-Werte der Extrempunkte: \[ f\left(2 + \frac{\sqrt{6}}{3}\right) \quad \text{und} \quad f\left(2 - \frac{\sqrt{6}}{3}\right) \] 4. **Wendetest**: Bestimme die Art der Extrempunkte mit der zweiten Ableitung: - Setze die x-Werte der Extrempunkte in \( f''(x) \) ein: - Wenn \( f''(x) > 0 \), dann ist es ein Minimum. - Wenn \( f''(x) < 0 \), dann ist es ein Maximum. 5. **Nullstellen**: Setze \( f(x) = 0 \): \[ 0,5x^3 - 3x^2 + 5x = 0 \implies x(0,5x^2 - 3x + 5) = 0 \] Eine Nullstelle ist \( x = 0 \). Die quadratische Gleichung hat keine reellen Lösungen, da die Diskriminante negativ ist. 6. **Verhalten im Unendlichen**: - Für \( x \to \infty \) und \( x \to -\infty \) betrachtet man den höchsten Grad: \[ f(x) \to \infty \quad \text{für} \quad x \to \infty \] \[ f(x) \to -\infty \quad \text{für} \quad x \to -\infty \] 7. **Graph der Funktion**: Zeichne den Graphen unter Berücksichtigung der gefundenen Extrempunkte, Nullstellen und dem Verhalten im Unendlichen. Diese Schritte geben dir eine umfassende Kurvendiskussion der Funktion \( f(x) = 0,5x^3 - 3x^2 + 5x \).
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]