Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Koordinaten der Funktion \( f(x) = \frac{50 \cdot \ln(x)}{e^x} \) über ein Näherungsverfahren auf Tausendstel genau zu berechnen, kannst du beispielsweise das Newton-Verfahren oder das Intervallhalbierungsverfahren verwenden. Hier ist eine allgemeine Vorgehensweise: 1. **Bestimme den Bereich**: Wähle einen Bereich für \( x \), in dem du die Nullstellen oder die Werte der Funktion untersuchen möchtest. 2. **Wähle ein Näherungsverfahren**: Zum Beispiel das Newton-Verfahren, das eine iterative Methode ist, um die Nullstellen einer Funktion zu finden. 3. **Berechne die Ableitung**: Für das Newton-Verfahren benötigst du die Ableitung von \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \frac{50 \cdot \ln(x)}{e^x} \right) \] Dies kann mit der Quotientenregel erfolgen. 4. **Iteriere**: Beginne mit einem Startwert \( x_0 \) und wende die Formel an: \[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \] Wiederhole diesen Schritt, bis die Änderung zwischen den Iterationen kleiner als 0,001 ist. 5. **Ergebnisse**: Wenn du die Koordinaten (x, f(x)) berechnet hast, stelle sicher, dass du die Werte auf Tausendstel genau angibst. Für eine genauere Berechnung wäre es hilfreich, spezifische Werte oder einen Bereich für \( x \) zu kennen.
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Ein Koordinatensystem ist ein System zur eindeutigen Bestimmung von Punkten im Raum durch Zahlenpaare oder -tripel. Die häufigste Einteilung erfolgt in zwei Dimensionen (2D) und drei Dimensionen... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]
Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]