Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um zu überprüfen, ob die Funktion \( f(x) = 2x^2 + 8x + 6 \) den angegebenen Wertebereich \( W_f = [-1, 5] \) hat und ob die Umkehrfunktion korrekt ist, gehen wir wie folgt vor: 1. **Bestimmung des Wertebereichs**: Die Funktion \( f(x) \) ist eine quadratische Funktion, die nach oben geöffnet ist (da der Koeffizient von \( x^2 \) positiv ist). Um den Wertebereich zu bestimmen, finden wir zunächst die Scheitelpunktform der Funktion. Die allgemeine Form einer quadratischen Funktion ist \( f(x) = ax^2 + bx + c \). Hier ist \( a = 2 \), \( b = 8 \) und \( c = 6 \). Der Scheitelpunkt \( x_s \) kann mit der Formel \( x_s = -\frac{b}{2a} \) berechnet werden: \[ x_s = -\frac{8}{2 \cdot 2} = -2 \] Nun setzen wir \( x_s \) in die Funktion ein, um den Funktionswert am Scheitelpunkt zu finden: \[ f(-2) = 2(-2)^2 + 8(-2) + 6 = 2 \cdot 4 - 16 + 6 = 8 - 16 + 6 = -2 \] Da die Funktion nach oben geöffnet ist, ist der minimale Wert \( f(-2) = -2 \). Um den maximalen Wert zu finden, setzen wir die Grenzen des Intervalls \( [-1, 5] \) in die Funktion ein: \[ f(-1) = 2(-1)^2 + 8(-1) + 6 = 2 \cdot 1 - 8 + 6 = 2 - 8 + 6 = 0 \] \[ f(5) = 2(5)^2 + 8(5) + 6 = 2 \cdot 25 + 40 + 6 = 50 + 40 + 6 = 96 \] Der Wertebereich von \( f \) auf dem Intervall \( [-1, 5] \) ist also \( [-2, 96] \), nicht \( [-1, 5] \). 2. **Umkehrbarkeit**: Eine Funktion ist umkehrbar, wenn sie injektiv ist, d.h. wenn sie für verschiedene \( x \) verschiedene \( f(x) \) Werte liefert. Da \( f(x) \) eine quadratische Funktion ist, ist sie nicht injektiv über das gesamte Intervall. Umkehrbarkeit kann jedoch auf einem eingeschränkten Intervall erreicht werden, wo die Funktion monoton ist. Der Bereich \( [-1, 5] \) ist nicht geeignet, um die Umkehrfunktion zu definieren, da die Funktion nicht injektiv ist. 3. **Überprüfung der Umkehrfunktion**: Die angegebene Umkehrfunktion \( f^{-1}(x) = -2 - 1 + \sqrt{x^2} \) scheint nicht korrekt zu sein. Um die Umkehrfunktion zu finden, müsste man die Gleichung \( y = 2x^2 + 8x + 6 \) nach \( x \) umstellen, was kompliziert ist und nicht zu der angegebenen Form führt. Zusammenfassend ist der Wertebereich von \( f \) nicht \( [-1, 5] \), und die angegebene Umkehrfunktion ist nicht korrekt.
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]