Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um zu überprüfen, ob die Funktion \( f(x) = 2x^2 + 8x + 6 \) auf dem Intervall \([-1, 5]\) umkehrbar ist, müssen wir zunächst den Wertebereich der Funktion bestimmen und dann die Monotonie analysieren. 1. **Wertebereich bestimmen**: Die Funktion \( f(x) \) ist eine Parabel, die nach oben geöffnet ist (da der Koeffizient von \( x^2 \) positiv ist). Um den Wertebereich zu finden, berechnen wir die Funktionswerte an den Randpunkten des Intervalls und den Scheitelpunkt. - Randpunkte: - \( f(-1) = 2(-1)^2 + 8(-1) + 6 = 2 - 8 + 6 = 0 \) - \( f(5) = 2(5)^2 + 8(5) + 6 = 50 + 40 + 6 = 96 \) - Scheitelpunkt: Der Scheitelpunkt einer Parabel \( ax^2 + bx + c \) liegt bei \( x = -\frac{b}{2a} \). Hier ist \( a = 2 \) und \( b = 8 \): \[ x_s = -\frac{8}{2 \cdot 2} = -2 \] Da \( -2 \) nicht im Intervall \([-1, 5]\) liegt, betrachten wir nur die Funktionswerte an den Randpunkten. Der Wertebereich von \( f \) auf \([-1, 5]\) ist also \([0, 96]\). 2. **Monotonie analysieren**: Um zu überprüfen, ob die Funktion umkehrbar ist, müssen wir feststellen, ob sie monoton ist. Dazu betrachten wir die Ableitung: \[ f'(x) = 4x + 8 \] Setzen wir die Ableitung gleich null, um kritische Punkte zu finden: \[ 4x + 8 = 0 \implies x = -2 \] Da \( -2 \) nicht im Intervall \([-1, 5]\) liegt, ist die Funktion auf diesem Intervall monoton. Da die Funktion monoton ist, bedeutet dies, dass sie in diesem Intervall umkehrbar ist. Zusammenfassend ist die Aussage, dass \( f:[-1,5] \to W_f \) nicht umkehrbar ist, falsch. Die Funktion ist tatsächlich umkehrbar auf dem gegebenen Intervall. Der Wertebereich ist \([0, 96]\).
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]
Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]
Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Zum Beispiel wären spezifische Punkte, durch die die Funktion... [mehr]