Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Die Gleichung \((g \circ f)^{-1} = f^{-1} \circ g^{-1}\) gilt aufgrund der Eigenschaften von Funktionen und deren Inversen. Hier ist die Erklärung: 1. **Definition der Verkettung**: Die Verkettung von zwei Funktionen \(f\) und \(g\) wird als \(g \circ f\) definiert, was bedeutet, dass du zuerst \(f\) anwendest und dann \(g\) auf das Ergebnis von \(f\). 2. **Inverse Funktion**: Eine Funktion \(f\) hat eine Inverse \(f^{-1}\), wenn \(f(f^{-1}(x)) = x\) und \(f^{-1}(f(x)) = x\) für alle \(x\) im Definitionsbereich von \(f\) gilt. 3. **Verkettung der Inversen**: Um zu zeigen, dass \((g \circ f)^{-1} = f^{-1} \circ g^{-1}\) gilt, müssen wir zeigen, dass die Anwendung der rechten Seite auf ein beliebiges \(x\) das gleiche Ergebnis liefert wie die Anwendung der linken Seite. - Beginne mit \(y = (g \circ f)(x)\). Das bedeutet, dass \(y = g(f(x))\). - Um \(x\) in Abhängigkeit von \(y\) zu finden, wende zuerst die Inverse von \(g\) an: \(f(x) = g^{-1}(y)\). - Jetzt wende die Inverse von \(f\) an: \(x = f^{-1}(g^{-1}(y))\). 4. **Zusammenfassung**: Das zeigt, dass die Anwendung von \(f^{-1} \circ g^{-1}\) auf \(y\) das ursprüngliche \(x\) zurückgibt. Daher gilt: \[ (g \circ f)^{-1} = f^{-1} \circ g^{-1} \] Diese Eigenschaft ist eine fundamentale Regel in der Funktionalanalysis und der Mathematik im Allgemeinen.
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]