Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Die Gleichung \((f \circ g)^{-1} = f^{-1} \circ g^{-1}\) gilt aufgrund der Eigenschaften von Funktionen und deren Inversen. Hier ist die Erklärung: 1. **Definition der Verkettung**: Die Verkettung \(fcirc g\) bedeutet, dass du zuerst die Funktion \(g\) anwendest und dann die Funktion \(f\) auf das Ergebnis von \(g\). 2. **Definition der Inversen**: Eine Funktion \(f\) hat eine Inverse \(f^{-1}\), wenn \(f(f^{-1}(x)) = x\) und \(f^{-1}(f(x)) = x\) für alle \(x\) im Definitionsbereich von \(f\) gilt. 3. **Anwendung der Inversen auf die Verkettung**: Wenn du die Inverse der verketteten Funktion \((f \circ g)\) betrachtest, möchtest du eine Funktion finden, die das Ergebnis von \(f \circ g\) zurück zu \(x\) bringt. Das bedeutet, du musst zuerst die Inverse von \(f\) anwenden und dann die Inverse von \(g\). 4. **Schrittweise Anwendung**: - Beginne mit \(y = (f \circ g)(x)\), was bedeutet \(y = f(g(x))\). - Um \(x\) zurückzugewinnen, wende zuerst \(f^{-1}\) an: \(f^{-1}(y) = g(x)\). - Jetzt wende \(g^{-1}\) an: \(g^{-1}(g(x)) = x\). 5. **Zusammenfassung**: Daher gilt \((f \circ g)^{-1}(y) = g^{-1}(f^{-1}(y))\), was zeigt, dass \((f \circ g)^{-1} = f^{-1} \circ g^{-1}\). Diese Eigenschaft ist eine fundamentale Regel in der Funktionalanalysis und hilft, die Beziehungen zwischen Funktionen und ihren Inversen zu verstehen.
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]
Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]
Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Zum Beispiel wären spezifische Punkte, durch die die Funktion... [mehr]