Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Die Gleichung \((f \circ g)^{-1} = f^{-1} \circ g^{-1}\) gilt aufgrund der Eigenschaften von Funktionen und deren Inversen. Hier ist die Erklärung: 1. **Definition der Verkettung**: Die Verkettung \(fcirc g\) bedeutet, dass du zuerst die Funktion \(g\) anwendest und dann die Funktion \(f\) auf das Ergebnis von \(g\). 2. **Definition der Inversen**: Eine Funktion \(f\) hat eine Inverse \(f^{-1}\), wenn \(f(f^{-1}(x)) = x\) und \(f^{-1}(f(x)) = x\) für alle \(x\) im Definitionsbereich von \(f\) gilt. 3. **Anwendung der Inversen auf die Verkettung**: Wenn du die Inverse der verketteten Funktion \((f \circ g)\) betrachtest, möchtest du eine Funktion finden, die das Ergebnis von \(f \circ g\) zurück zu \(x\) bringt. Das bedeutet, du musst zuerst die Inverse von \(f\) anwenden und dann die Inverse von \(g\). 4. **Schrittweise Anwendung**: - Beginne mit \(y = (f \circ g)(x)\), was bedeutet \(y = f(g(x))\). - Um \(x\) zurückzugewinnen, wende zuerst \(f^{-1}\) an: \(f^{-1}(y) = g(x)\). - Jetzt wende \(g^{-1}\) an: \(g^{-1}(g(x)) = x\). 5. **Zusammenfassung**: Daher gilt \((f \circ g)^{-1}(y) = g^{-1}(f^{-1}(y))\), was zeigt, dass \((f \circ g)^{-1} = f^{-1} \circ g^{-1}\). Diese Eigenschaft ist eine fundamentale Regel in der Funktionalanalysis und hilft, die Beziehungen zwischen Funktionen und ihren Inversen zu verstehen.
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]