Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Der Unterschied zwischen einer logarithmischen Funktion und einer Parabelfunktion liegt in ihrer mathematischen Form und ihren Eigenschaften: 1. **Logarithmische Funktion**: - Die allgemeine Form ist \( f(x) = \log_b(x) \), wobei \( b \) die Basis des Logarithmus ist (z.B. \( b = 10 \) für den dekadischen Logarithmus oder \( b = e \) für den natürlichen Logarithmus). - Der Definitionsbereich ist \( x > 0 \), da der Logarithmus nur für positive Werte definiert ist. - Die Funktion wächst langsam und hat eine charakteristische Form, die sich asymptotisch der y-Achse nähert, aber niemals die x-Achse schneidet. - Sie hat keine Nullstellen, da der Logarithmus für positive \( x \) immer einen positiven Wert ergibt. 2. **Parabelfunktion**: - Die allgemeine Form ist \( f(x) = ax^2 + bx + c \), wobei \( a \), \( b \) und \( c \) Konstanten sind und \( a \neq 0 \). - Der Definitionsbereich ist die gesamte reelle Zahlengerade (\( x \in \mathbb{R} \)). - Die Funktion hat eine charakteristische U-Form (nach oben oder unten geöffnet, abhängig vom Vorzeichen von \( a \)). - Parabelfunktionen können Nullstellen haben, die durch die Lösung der quadratischen Gleichung gefunden werden können. Zusammenfassend lässt sich sagen, dass logarithmische Funktionen eine langsame, asymptotische Wachstumsrate aufweisen und nur für positive Werte definiert sind, während Parabelfunktionen eine U-Form haben und auf der gesamten reellen Achse definiert sind.
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]
Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]