Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Um die Symmetrie eines Graphen zu bestimmen, betrachtet man die Eigenschaften der Funktion. Die Funktion \( f(x) = (x + 17)^{13} \) ist eine ungerade Funktion, da der Exponent 13 ungerade ist. Für ungerade Funktionen gilt die Symmetrie bezüglich des Ursprungs, was bedeutet, dass für jeden Punkt \( (x, f(x)) \) auch der Punkt \( (-x, -f(x)) \) auf dem Graphen liegt. Um die symmetrischen Punkte zu finden, kannst du folgende Schritte durchführen: 1. Wähle einen Punkt \( (a, f(a)) \) auf dem Graphen. 2. Berechne den symmetrischen Punkt \( (-a, -f(a)) \). Beispielsweise, wenn du den Punkt \( (0, f(0)) \) betrachtest: - \( f(0) = (0 + 17)^{13} = 17^{13} \) - Der symmetrische Punkt wäre dann \( (-0, -f(0)) = (0, -17^{13}) \). Das bedeutet, dass für jeden Punkt auf dem Graphen auch ein symmetrischer Punkt existiert, der sich im Ursprung spiegelt.
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Wenn in einer Aufgabe verlangt wird, den größten Funktionswert von \( f \) auf dem Intervall \( D_f = [-4; 5] \) anzugeben und du einen Graphen der Funktion vorliegen hast, gehst du folgend... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]