Welche Punkte sind symmetrisch zum Graphen f(x)=3(x^19 -5)+12?

Antwort

Um die Symmetrie des Graphen der Funktion \( f(x) = 3(x^{19} - 5) + 12 \) zu untersuchen, betrachten wir die Eigenschaften der Funktion. 1. **Achsensymmetrie (y-Achse)**: Eine Funktion ist achsensymmetrisch zur y-Achse, wenn \( f(-x) = f(x) \) für alle \( x \) gilt. Berechnen wir \( f(-x) \): \[ f(-x) = 3((-x)^{19} - 5) + 12 = 3(-x^{19} - 5) + 12 = -3x^{19} + 15 + 12 = -3x^{19} + 27 \] Da \( f(-x) \neq f(x) \), ist die Funktion nicht achsensymmetrisch. 2. **Punktsymmetrie (Ursprung)**: Eine Funktion ist punktsymmetrisch zum Ursprung, wenn \( f(-x) = -f(x) \) gilt. Wir haben bereits \( f(-x) = -3x^{19} + 27 \) und berechnen \( -f(x) \): \[ -f(x) = -[3(x^{19} - 5) + 12] = -3x^{19} + 15 - 12 = -3x^{19} + 3 \] Da \( f(-x) \neq -f(x) \), ist die Funktion auch nicht punktsymmetrisch. Zusammenfassend ist der Graph der Funktion \( f(x) = 3(x^{19} - 5) + 12 \) weder achsensymmetrisch zur y-Achse noch punktsymmetrisch zum Ursprung. Daher gibt es keine Punkte, die symmetrisch zum Graphen sind.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie lautet die Gleichung der Symmetriachse des Graphen von g?

Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]

Was ist der Mittelwertsatz für f(x) = -1/3x^3 + 1/4x^2 + 3x + 2?

Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]