Der Punkt Q liegt auf dem Graphen der Funktionsgleichung. Vervollständigen Sie die Gleichung: Q (-1/4) liegt auf y = (x - ?)^2.

Antwort

Um die Funktionsgleichung zu vervollständigen, benötigen wir den Punkt Q(-1/4). Der Punkt Q hat die x-Koordinate -1 und die y-Koordinate 4. Die allgemeine Form der Funktion ist \( y = (x - a)^2 + b \), wobei \( a \) und \( b \) die Verschiebungen in x- und y-Richtung darstellen. Da der Punkt Q(-1, 4) auf dem Graphen liegt, setzen wir die Koordinaten in die Gleichung ein: 1. \( x = -1 \) 2. \( y = 4 \) Das ergibt: \[ 4 = (-1 - a)^2 + b \] Um die Werte für \( a \) und \( b \) zu finden, können wir annehmen, dass \( a = -1 \) (da der Punkt auf der x-Achse bei -1 liegt). Dann wird die Gleichung: \[ 4 = (0)^2 + b \] Das bedeutet, dass \( b = 4 \). Somit lautet die vervollständigte Funktionsgleichung: \[ y = (x + 1)^2 + 4 \] Die gesuchte Funktionsgleichung ist also \( y = (x + 1)^2 + 4 \).

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]

Durch welche Operationen wird eine Funktion f(x) entlang der x-Achse gestaucht oder gestreckt?

Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]

Wie bestimme ich den größten Funktionswert von f im Intervall [-4;5] anhand eines Graphen?

Wenn in einer Aufgabe verlangt wird, den größten Funktionswert von \( f \) auf dem Intervall \( D_f = [-4; 5] \) anzugeben und du einen Graphen der Funktion vorliegen hast, gehst du folgend... [mehr]

Wie berechnet man die Länge eines Vorfahrtsstraßen-Schildes mit 3600 cm² Fläche und die Fläche des halb so langen gelben Quadrats?

Gegeben: - Fläche des Schildes: \( A_{\text{Schild}} = 3600\,\text{cm}^2 \) - Das gelbe Quadrat ist halb so lang wie das Schild (gemeint ist: die Seitenlänge des Quadrats ist halb so gro&sz... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

(A^2 + B^2)²?

Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]

(9a + 15b)²?

Der Ausdruck \((9a + 15b)^2\) kann mit der binomischen Formel \((x + y)^2 = x^2 + 2xy + y^2\) erweitert werden. Hier ist \(x = 9a\) und \(y = 15b\). Die Berechnung erfolgt wie folgt: \[ (9a + 15b... [mehr]

(7a-1)²?

Um den Ausdruck \((7a - 1)^2\) zu quadrieren, kannst du die Formel für das Quadrat eines Binoms verwenden: \((x - y)^2 = x^2 - 2xy + y^2\). Hier ist \(x = 7a\) und \(y = 1\). Also: \[ (7a - 1... [mehr]