Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Um zu bestimmen, wie der Parameter \( a \) gewählt werden muss, damit die Funktion \( f(x) = a^2 \cdot x^3 - 6 \cdot a \cdot x^2 \) einen Wendepunkt bei \( x = 1 \) hat, müssen wir die zweite Ableitung der Funktion betrachten. 1. **Erste Ableitung** \( f'(x) \): \[ f'(x) = \frac{d}{dx}(a^2 \cdot x^3 - 6 \cdot a \cdot x^2) = 3a^2 \cdot x^2 - 12a \cdot x \] 2. **Zweite Ableitung** \( f''(x) \): \[ f''(x) = \frac{d}{dx}(3a^2 \cdot x^2 - 12a \cdot x) = 6a^2 \cdot x - 12a \] 3. **Wendepunkt**: Ein Wendepunkt liegt vor, wenn die zweite Ableitung an dieser Stelle gleich null ist. Setze \( x = 1 \) in die zweite Ableitung ein: \[ f''(1) = 6a^2 \cdot 1 - 12a = 6a^2 - 12a \] Setze dies gleich null: \[ 6a^2 - 12a = 0 \] 4. **Faktorisieren**: \[ 6a(a - 2) = 0 \] 5. **Lösungen**: Die Lösungen sind \( a = 0 \) oder \( a = 2 \). Da \( a \neq 0 \) gegeben ist, bleibt: \[ a = 2 \] Somit muss der Parameter \( a \) gleich 2 gewählt werden, damit die Funktion \( f \) einen Wendepunkt bei \( x = 1 \) besitzt.
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]