Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Die gegebene Gleichung \( y = x - 9x + 20.25 \) scheint einen Fehler zu enthalten, da sie nicht die Form einer Parabel hat. Eine Normalparabel hat die Form \( y = x^2 \). Wenn die Gleichung korrekt wäre, könnte man die Verschiebung bestimmen. Angenommen, die Gleichung sollte \( y = x^2 - 9x + 20.25 \) lauten, dann handelt es sich um eine Parabel der Form \( y = (x - h)^2 + k \), wobei \( h \) die Verschiebung nach rechts oder links und \( k \) die Verschiebung nach oben oder unten ist. Um die Verschiebung zu bestimmen, kann man die quadratische Gleichung in Scheitelpunktform umwandeln: 1. Starte mit \( y = x^2 - 9x + 20.25 \). 2. Vervollständige das Quadrat: \[ y = (x^2 - 9x + \frac{81}{4}) - \frac{81}{4} + 20.25 \] \[ y = (x - \frac{9}{2})^2 - \frac{81}{4} + \frac{81}{4} \] \[ y = (x - \frac{9}{2})^2 \] Die Scheitelpunktform der Parabel ist \( y = (x - \frac{9}{2})^2 \). Das bedeutet, die Normalparabel \( y = x^2 \) wurde um \( \frac{9}{2} \) Einheiten nach rechts verschoben. Daher muss die Normalparabel um \( \frac{9}{2} \) Einheiten nach rechts verschoben werden, um die gegebene Parabel zu erhalten.
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Gegeben ist, dass die Parabel die x-Achse bei \( x = -2 \) und \( x = 4 \) schneidet. Das bedeutet, die Nullstellen der Parabel sind \( x_1 = -2 \) und \( x_2 = 4 \). Die allgemeine Form einer Parabe... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]