Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um den Berliner Bogen mathematisch zu beschreiben, kann man eine Parabel verwenden. Die allgemeine Form einer Parabel ist \( y = a \cdot (x - h)^2 + k \), wobei \( (h, k) \) der Scheitelpunkt der Parabel ist. In deinem Fall hat der Bogen eine Spannweite von 140 m und eine Höhe von 32,83 m. Der Scheitelpunkt der Parabel liegt in der Mitte der Spannweite, also bei \( h = 0 \) und \( k = 32,83 \). Die Spannweite reicht von \( -70 \) m bis \( 70 \) m, da die gesamte Spannweite 140 m beträgt. Um den Wert von \( a \) zu bestimmen, kannst du einen Punkt auf der Parabel verwenden. Zum Beispiel, wenn \( x = 70 \) (einer der Endpunkte der Spannweite), dann ist \( y = 0 \) (Bodenhöhe). Setze diese Werte in die Gleichung ein: \[ 0 = a \cdot (70 - 0)^2 + 32,83 \] Das vereinfacht sich zu: \[ 0 = 4900a + 32,83 \] Daraus folgt: \[ 4900a = -32,83 \quad \Rightarrow \quad a = -\frac{32,83}{4900} \approx -0,0067 \] Die Funktionsgleichung des Bogens lautet also: \[ y = -0,0067 \cdot x^2 + 32,83 \] Diese Gleichung beschreibt den Berliner Bogen.
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]
Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]
Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Zum Beispiel wären spezifische Punkte, durch die die Funktion... [mehr]