Wie berechne ich das Maximum der Funktion durch Nullsetzen der Ableitung?

Antwort

Um das Maximum einer Funktion zu berechnen, indem du die Ableitung gleich Null, folge diesen Schritten: 1. **Funktion aufstellen**: Sei \( f(x) \) die gegebene Funktion. 2. **Ableitung berechnen**: Bestimme die erste Ableitung \( f'(x) \). 3. **Ableitung gleich Null setzen**: Löse die Gleichung \( f'(x) = 0 \) nach \( x \) auf, um die kritischen Punkte zu finden. 4. **Zweite Ableitung berechnen**: Bestimme die zweite Ableitung \( f''(x) \). 5. **Kritische Punkte untersuchen**: Setze die kritischen Punkte in die zweite Ableitung ein: - Wenn \( f''(x) < 0 \), handelt es sich um ein lokales Maximum. - Wenn \( f''(x) > 0 \), handelt es sich um ein lokales Minimum. - Wenn \( f''(x) = 0 \), ist der Test nicht schlüssig, und es könnte sich um einen Sattelpunkt handeln. Hier ist ein Beispiel: Gegeben sei die Funktion \( f(x) = -2x^2 + 4x + 1 \). 1. **Funktion**: \( f(x) = -2x^2 + 4x + 1 \) 2. **Erste Ableitung**: \( f'(x) = -4x + 4 \) 3. **Ableitung gleich Null setzen**: \[ -4x + 4 = 0 \implies x = 1 \] 4. **Zweite Ableitung**: \( f''(x) = -4 \) 5. **Kritischen Punkt untersuchen**: \[ f''(1) = -4 < 0 \] Da die zweite Ableitung negativ ist, hat die Funktion bei \( x = 1 \) ein lokales Maximum. 6. **Maximum berechnen**: Setze \( x = 1 \) in die ursprüngliche Funktion ein: \[ f(1) = -2(1)^2 + 4(1) + 1 = 3 \] Das Maximum der Funktion \( f(x) = -2x^2 + 4x + 1 \) ist also \( f(1) = 3 \).

KI fragen

Verwandte Fragen

Was ist die Produktregel einfach erklärt?

Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]

Was ist die Produktregel?

Die Produktregel ist eine wichtige Ableitungsregel in der Differentialrechnung. Sie wird verwendet, wenn du die Ableitung eines Produkts zweier Funktionen berechnen möchtest. Angenommen, du hast... [mehr]

Wie lautet die Ableitung von f(x)=e^(a*x)?

Die Ableitung der Funktion \( f(x) = e^{a \cdot x} \) nach \( x \) ist: \[ f'(x) = a \cdot e^{a \cdot x} \] Dabei ist \( a \) eine Konstante.

Ist die Funktion g(x) = |x-1| + |x-2| differenzierbar?

Die Funktion \( g(x) = |x-1| + |x-2| \) ist **nicht überall differenzierbar**. **Begründung:** Der Ausdruck \( |x-a| \) ist an der Stelle \( x = a \) **nicht differenzierbar**, da dort ein... [mehr]

-cos(x) abgeleitet?

Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]

Wie lautet die Ableitung von f(x) = Wurzel(2x) unter Verwendung der Kettenregel (innere und äußere Ableitung)?

Gegeben ist die Funktion: \( f(x) = \sqrt{2x} \) Das ist eine Verkettung zweier Funktionen: - **Äußere Funktion:** \( g(u) = \sqrt{u} = u^{1/2} \) - **Innere Funktion:** \( h(x) = 2x \)... [mehr]

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]

Was ist die Riemannsche Vermutung?

Die Riemannsche Vermutung ist eines der berühmtesten und wichtigsten ungelösten Probleme der Mathematik. Sie wurde 1859 von dem deutschen Mathematiker Bernhard Riemann formuliert und besch&a... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]