Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Um die ganzrationale Funktion dritten Grades f(x) = ax^3 bx^2 + cx + d \) zu bestimmen, die durch die Punkte A(0|4), B(2|6), C(3|5,5) und D(-2|8) verläuft setzen wir die Koordinaten der Punkte in die Funktion ein und erhalten ein System von Gleichungen. 1. Für den Punkt A(0|4): \[ f(0) = d = 4 \] 2. Für den Punkt B(2|6): \[ f(2) = 8a + 4b + 2c + d = 6 \] Setzen wir \( d = 4 \) ein: \[ 8a + 4b + 2c + 4 = 6 \implies 8a + 4b + 2c = 2 \quad (1) \] 3. Für den Punkt C(3|5,5): \[ f(3) = 27a + 9b + 3c + d = 5.5 \] Setzen wir \( d = 4 \) ein: \[ 27a + 9b + 3c + 4 = 5.5 \implies 27a + 9b + 3c = 1.5 \quad (2) \] 4. Für den Punkt D(-2|8): \[ f(-2) = -8a + 4b - 2c + d = 8 \] Setzen wir \( d = 4 \) ein: \[ -8a + 4b - 2c + 4 = 8 \implies -8a + 4b - 2c = 4 \quad (3) \] Jetzt haben wir ein System von drei Gleichungen: 1. \( 8a + 4b + 2c = 2 \) (1) 2. \( 27a + 9b + 3c = 1.5 \) (2) 3. \( -8a + 4b - 2c = 4 \) (3) Um das System zu lösen, können wir die Gleichungen umformen und die Variablen eliminieren. Zuerst teilen wir die Gleichungen (1) und (2) durch 2 und (3) durch 2: 1. \( 4a + 2b + c = 1 \) (1') 2. \( 27a + 9b + 3c = 1.5 \) (2') 3. \( -4a + 2b - c = 2 \) (3') Nun addieren wir (1') und (3'): \[ (4a + 2b + c) + (-4a + 2b - c) = 1 + 2 \implies 4b = 3 \implies b = \frac{3}{4} \] Setzen wir \( b = \frac{3}{4} \) in (1') ein: \[ 4a + 2 \cdot \frac{3}{4} + c = 1 \implies 4a + \frac{3}{2} + c = 1 \implies 4a + c = 1 - \frac{3}{2} = -\frac{1}{2} \quad (4) \] Setzen wir \( b = \frac{3}{4} \) in (2') ein: \[ 27a + 9 \cdot \frac{3}{4} + 3c = 1.5 \implies 27a + \frac{27}{4} + 3c = 1.5 \] Multiplizieren wir die gesamte Gleichung mit 4, um die Brüche zu eliminieren: \[ 108a + 27 + 12c = 6 \implies 108a + 12c = 6 - 27 = -21 \quad (5) \] Jetzt haben wir zwei Gleichungen (4) und (5): 1. \( 4a + c = -\frac{1}{2} \) (4) 2. \( 108a + 12c = -21 \) (5) Setzen wir \( c = -\frac{1}{2} - 4a \) aus (4) in (5) ein: \[ 108a + 12\left(-\frac{1}{2} -
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]