Wie erkenne ich, ob eine Funktion fallend oder wachsend ist?

Antwort

Um zu erkennen, ob eine Funktion \( f(x) \) fallend oder wachsend ist, kannst du die erste Ableitung \( f'(x) \) der Funktion verwenden: 1. **Wachsend**: Eine Funktion \( f(x) \) ist in einem Intervall \( I \) wachsend, wenn \( f'(x) > 0 \) für alle \( x \) in \( I \). Das bedeutet, dass die Steigung der Tangente an jedem Punkt in diesem Intervall positiv ist. 2. **Fallend**: Eine Funktion \( f(x) \) ist in einem Intervall \( I \) fallend, wenn \( f'(x) < 0 \) für alle \( x \) in \( I \). Das bedeutet, dass die Steigung der Tangente an jedem Punkt in diesem Intervall negativ ist. 3. **Konstant**: Eine Funktion \( f(x) \) ist in einem Intervall \( I \) konstant, wenn \( f'(x) = 0 \) für alle \( x \) in \( I \). Zusammengefasst: - Berechne die erste Ableitung \( f'(x) \). - Untersuche das Vorzeichen von \( f'(x) \) in den interessierenden Intervallen. Beispiel: Für die Funktion \( f(x) = x^2 \): - Die erste Ableitung ist \( f'(x) = 2x \). - \( f'(x) > 0 \) für \( x > 0 \) (die Funktion ist wachsend für \( x > 0 \)). - \( f'(x) < 0 \) für \( x < 0 \) (die Funktion ist fallend für \( x < 0 \)). - \( f'(x) = 0 \) bei \( x = 0 \) (die Funktion hat hier einen Wendepunkt). Diese Methode hilft dir, das Verhalten der Funktion in verschiedenen Intervallen zu bestimmen.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]

Was ist der Mittelwertsatz für f(x) = -1/3x^3 + 1/4x^2 + 3x + 2?

Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]

Welche Werte haben a, d und e in der Funktion f(x) = a(x-d)(x-e)?

Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Zum Beispiel wären spezifische Punkte, durch die die Funktion... [mehr]