Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um zu erkennen, ob eine Funktion \( f(x) \) fallend oder wachsend ist, kannst du die erste Ableitung \( f'(x) \) der Funktion verwenden: 1. **Wachsend**: Eine Funktion \( f(x) \) ist in einem Intervall \( I \) wachsend, wenn \( f'(x) > 0 \) für alle \( x \) in \( I \). Das bedeutet, dass die Steigung der Tangente an jedem Punkt in diesem Intervall positiv ist. 2. **Fallend**: Eine Funktion \( f(x) \) ist in einem Intervall \( I \) fallend, wenn \( f'(x) < 0 \) für alle \( x \) in \( I \). Das bedeutet, dass die Steigung der Tangente an jedem Punkt in diesem Intervall negativ ist. 3. **Konstant**: Eine Funktion \( f(x) \) ist in einem Intervall \( I \) konstant, wenn \( f'(x) = 0 \) für alle \( x \) in \( I \). Zusammengefasst: - Berechne die erste Ableitung \( f'(x) \). - Untersuche das Vorzeichen von \( f'(x) \) in den interessierenden Intervallen. Beispiel: Für die Funktion \( f(x) = x^2 \): - Die erste Ableitung ist \( f'(x) = 2x \). - \( f'(x) > 0 \) für \( x > 0 \) (die Funktion ist wachsend für \( x > 0 \)). - \( f'(x) < 0 \) für \( x < 0 \) (die Funktion ist fallend für \( x < 0 \)). - \( f'(x) = 0 \) bei \( x = 0 \) (die Funktion hat hier einen Wendepunkt). Diese Methode hilft dir, das Verhalten der Funktion in verschiedenen Intervallen zu bestimmen.
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]
Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]
Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Zum Beispiel wären spezifische Punkte, durch die die Funktion... [mehr]