Eine Kurvendiskussion ist eine systematische Untersuchung des Verlaufs einer mathematischen Funktion, meist einer Funktion f(x). Ziel ist es, möglichst viele Eigenschaften der Funktion zu bestimm...
Um den Extrempunkt der Funktion \( f_a(x) = \frac{x}{e^{ax}} \) zu bestimmen, müssen wir die Ableitung der Funktion bilden und diese gleich null setzen. 1. **Ableitung berechnen**: Wir verwenden die Quotientenregel für die Ableitung: \[ f_a'(x) = \frac{(e^{ax} \cdot 1) - (x \cdot a e^{ax})}{(e^{ax})^2} = \frac{e^{ax} - a x e^{ax}}{e^{2ax}} = \frac{e^{ax}(1 - ax)}{e^{2ax}} = \frac{1 - ax}{e^{ax}} \] 2. **Extrempunkte finden**: Setze die Ableitung gleich null: \[ f_a'(x) = 0 \implies 1 - ax = 0 \implies ax = 1 \implies x = \frac{1}{a} \] 3. **Extrempunkt bestimmen**: Um den Extrempunkt zu finden, setzen wir \( x = \frac{1}{a} \) in die Funktion \( f_a(x) \) ein: \[ f_a\left(\frac{1}{a}\right) = \frac{\frac{1}{a}}{e^{a \cdot \frac{1}{a}}} = \frac{\frac{1}{a}}{e} = \frac{1}{ae} \] 4. **Ergebnisse für verschiedene Werte von a**: - Für \( a = 1 \): \[ x = 1, \quad f_1(1) = \frac{1}{e} \] - Für \( a = 2 \): \[ x = \frac{1}{2}, \quad f_2\left(\frac{1}{2}\right) = \frac{1}{2e} \] - Für \( a = 3 \): \[ x = \frac{1}{3}, \quad f_3\left(\frac{1}{3}\right) = \frac{1}{3e} \] Zusammenfassend sind die Extrempunkte der Funktionenschar \( f_a(x) \) in Abhängigkeit von \( a \): - Für \( a = 1 \): Extrempunkt \( \left(1, \frac{1}{e}\right) \) - Für \( a = 2 \): Extrempunkt \( \left(\frac{1}{2}, \frac{1}{2e}\right) \) - Für \( a = 3 \): Extrempunkt \( \left(\frac{1}{3}, \frac{1}{3e}\right) \)
Eine Kurvendiskussion ist eine systematische Untersuchung des Verlaufs einer mathematischen Funktion, meist einer Funktion f(x). Ziel ist es, möglichst viele Eigenschaften der Funktion zu bestimm...
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x...
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(...
Gegeben ist die Funktion: \( f(x) = x^2 \cdot e^{2x} \) **1. Ableitung \( f'(x) \):** Hier wird die Produktregel benötigt: \( (u \cdot v)' = u' \cdot v + u \cdot v' \)...
Die Aussage „Es gibt Funktionen von einer zweielementigen Menge auf eine andere zweielementige Menge“ bedeutet Folgendes: - Du hast zwei Mengen, nennen wir sie \( A \) und \( B \), und be...
Die Umkehrfunktion (Inverse) von \( f(x) = -x \) ist ebenfalls \( f^{-1}(x) = -x \).
Die Umkehrfunktion (auch Inverse Funktion genannt) ist eine Funktion, die die Wirkung einer anderen Funktion rückgängig macht. Wenn du eine Funktion \( f \) hast, die einen Wert \( x \) auf...
Die **Hauptwertfunktion** (oft als „hr-Funktion“ abgekürzt) eines Ausdrucks wie \( x+5 \) ist einfach die Funktion selbst, da es sich um eine lineare Funktion handelt. Die Funktionsv...
Extremwertaufgaben sind ein zentrales Thema in der Mathematik, insbesondere in der Analysis. Sie beschäftigen sich mit der Frage, wie man den größten oder kleinsten Wert (also ein Maxi...
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut...