Die Zahl 0,009 ist eine Dezimalzahl und entspricht neun Tausendstel. In Bruchschreibweise wäre das: 0,009 = 9/1000 Das bedeutet, dass 0,009 neun Teile von insgesamt tausend Teilen eines Ganzen... [mehr]
Um den Ausdruck \((1 \cdot x^2 / 4)^{-5/2}\) zu vereinfachen, folge diesen Schritten: 1. Schreibe den Ausdruck in einer einfacheren Form: \[ \left(\frac{x^2}{4}\right)^{-5/2} \] 2. Verwende die Potenzregel \((a/b)^n = a^n / b^n\): \[ \left(\frac{x^2}{4}\right)^{-5/2} = \frac{(x^2)^{-5/2}}{4^{-5/2}} \] 3. Vereinfache die einzelnen Teile: \[ (x^2)^{-5/2} = x^{2 \cdot (-5/2)} = x^{-5} \] \[ 4^{-5/2} = (2^2)^{-5/2} = 2^{-5} = \frac{1}{2^5} = \frac{1}{32} \] 4. Setze die vereinfachten Teile zusammen: \[ \frac{x^{-5}}{\frac{1}{32}} = x^{-5} \cdot 32 = 32x^{-5} \] Der vereinfachte Ausdruck ist: \[ 32x^{-5} \]
Die Zahl 0,009 ist eine Dezimalzahl und entspricht neun Tausendstel. In Bruchschreibweise wäre das: 0,009 = 9/1000 Das bedeutet, dass 0,009 neun Teile von insgesamt tausend Teilen eines Ganzen... [mehr]
Die Differenz \( x^2 - y^2 \) kann als sogenannte "Differenz zweier Quadrate" geschrieben werden. Sie lässt sich faktorisieren zu: \[ x^2 - y^2 = (x + y)(x - y) \] Das ist eine grundl... [mehr]
Deine Frage ist sehr allgemein formuliert. "50%" kann sich auf viele verschiedene Dinge beziehen, zum Beispiel auf einen Prozentsatz, einen Rabatt, eine Wahrscheinlichkeit oder einen Anteil.... [mehr]
Um den Term \(-3x^2 + 15x\) zu vereinfachen oder zu berechnen, gibt es verschiedene Möglichkeiten – je nachdem, was genau gefragt ist: **1. Ausklammern:** Du kannst den gemeinsamen Faktor... [mehr]
Um von der Gleichung \( 8 = \frac{1}{3^x} \) auf \( x^3 = \frac{1}{8} \) zu kommen, musst du die Gleichung so umformen, dass \( x \) isoliert wird und dann beide Seiten umstellen. Hier ist der Rechenw... [mehr]
\(\left(\frac{x}{2y}\right)^4 = \frac{x^4}{(2y)^4} = \frac{x^4}{16y^4}\)
Die Zahl 20 kann als Bruch geschrieben werden, indem du sie als Zähler und 1 als Nenner verwendest: \[ 20 = \frac{20}{1} \] Das ist die Darstellung von 20 als Bruch.
Um 102 durch 17 zu rechnen, teilst du 102 durch 17: 102 ÷ 17 = 6 Das Ergebnis ist 6.
Um 5250 durch 3500 zu teilen, kannst du den Bruch vereinfachen. 1. Schreibe den Bruch: \( \frac{5250}{3500} \). 2. Teile sowohl den Zähler als auch den Nenner durch 3500: \( \frac{5250 \di... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]