Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Die dritte Ableitung muss bei Wendestellen nicht ungleich null sein. Eine Wendestelle ist definiert als ein Punkt, an dem sich das Krümmungsverhalten einer Funktion ändert, also von konvex nach konkav oder umgekehrt. Dies geschieht, wenn die zweite Ableitung der Funktion an diesem Punkt gleich null ist und sich das Vorzeichen der zweiten Ableitung ändert. Die dritte Ableitung kann an einer Wendestelle gleich null sein, muss es aber nicht. Wenn die dritte Ableitung an einer Wendestelle gleich null ist, kann dies darauf hindeuten, dass die Funktion an dieser Stelle eine flachere Krümmung hat, aber es ist nicht zwingend erforderlich. Es ist wichtig, die zweite Ableitung zu betrachten, um die Wendestelle zu identifizieren, während die dritte Ableitung zusätzliche Informationen über das Verhalten der Funktion in der Nähe dieser Stelle liefern kann.
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Die Ableitung der Funktion \( f(x) = 4,89^x \) kann mit der Exponentialregel abgeleitet werden. Die Ableitung ist gegeben durch: \[ f'() = 4,89^x \cdot \ln(4,89) \] Hierbei ist \( \ln(4,89) \)... [mehr]
Um die Ableitung der Funktion \( f(x) = x + \sqrt{x} \) zu bestimmen, gehen wir Schritt für Schritt vor. 1. **Identifikation der Funktionsteile**: Die Funktion besteht aus zwei Teilen: \( x \) u... [mehr]
Um Aussagen über die Funktion \( f(x) = e^{v(x)} \) zu machen, wobei \( v(x) = x^2 \), betrachten wir zunächst die Ableitung von \( v(x) \). 1. **Ableitung von \( v(x) \)**: \[ v... [mehr]
Die Ableitung von \(0,5^x\) kann mit der Regel für die Ableitung von Exponentialfunktionen berechnet werden. Die allgemeine Form der Ableitung einer Funktion \(a^x\) ist \(a^x \cdot \ln(a)\), wob... [mehr]
Um die dritte Ableitung der Funktion \( f(x) = (4x + 1) \cdot e^x \) zu berechnen, verwenden wir die Produktregel und die Ableitungen von \( e^x \). 1. **Erste Ableitung**: \[ f'(x) = (4x... [mehr]