Was ist der Definitionsbereich von (x+3)/(x^2+x)?

Antwort

Der Definitionsbereich einer Funktion ist die Menge aller Werte, für die die Funktion definiert ist. Bei der Funktion \( f(x) = \frac{x + 3}{x^2 + x} \) muss der Nenner ungleich null sein, da eine Division durch null nicht definiert ist. Zuerst setzen wir den Nenner gleich null und lösen die Gleichung: \[ x^2 + x = 0 \] Faktorisieren ergibt: \[ x(x + 1) = 0 \] Die Lösungen sind: \[ x = 0 \quad \text{und} \quad x = -1 \] Das bedeutet, dass die Funktion an den Stellen \( x = 0 \) und \( x = -1 \) nicht definiert ist. Der Definitionsbereich \( WS \) der Funktion ist somit: \[ WS = \mathbb{R} \setminus \{0, -1\} \] Das heißt, der Definitionsbereich umfasst alle reellen Zahlen außer 0 und -1.

KI fragen

Verwandte Fragen

Wie lautet der Bruch von 0,009?

Die Zahl 0,009 ist eine Dezimalzahl und entspricht neun Tausendstel. In Bruchschreibweise wäre das: 0,009 = 9/1000 Das bedeutet, dass 0,009 neun Teile von insgesamt tausend Teilen eines Ganzen... [mehr]

Was bedeutet 50 Prozent?

Deine Frage ist sehr allgemein formuliert. "50%" kann sich auf viele verschiedene Dinge beziehen, zum Beispiel auf einen Prozentsatz, einen Rabatt, eine Wahrscheinlichkeit oder einen Anteil.... [mehr]

Welcher Wortschatz ist typisch bei der Laplace-Transformation?

Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]

Was ist die Produktregel einfach erklärt?

Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]

Welche Funktion hat ein Maximum bei (332.0822, 0.83269) und ein Minimum bei (332.2387, -0.82764) und konvergiert für x gegen unendlich gegen die x-Achse?

Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]

Welche Funktion besitzt sowohl ein Minimum als auch ein Maximum und hat auf beiden Seiten eine Asymptote zur x-Achse?

Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]

Was ist eine ganzrationale Funktion?

Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]

(x/2y)^4 ohne Klammer schreiben

\(\left(\frac{x}{2y}\right)^4 = \frac{x^4}{(2y)^4} = \frac{x^4}{16y^4}\)

Wie stellt man 20 als Bruch dar?

Die Zahl 20 kann als Bruch geschrieben werden, indem du sie als Zähler und 1 als Nenner verwendest: \[ 20 = \frac{20}{1} \] Das ist die Darstellung von 20 als Bruch.

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]