Um 5250 durch 3500 zu teilen, kannst du den Bruch vereinfachen. 1. Schreibe den Bruch: \( \frac{5250}{3500} \). 2. Teile sowohl den Zähler als auch den Nenner durch 3500: \( \frac{5250 \di... [mehr]
Um den Definitionsbereich des Bruchs \( \frac1}{1 - \frac{1}{x^2} + \frac{1}{x^2} - 25} \) zu bestimmen, müssen wir sicherstellen, dass der Nenner nicht gleich null ist. Zuerst vereinfachen wir den Nenner: \[ 1 - \frac{1}{x^2} + \frac{1}{x^2} - 25 = 1 - 25 = -24 \] Der Nenner ist also konstant und gleich \(-24\), was niemals null wird.Da der Nenner nicht null ist, müssen wir nur darauf achten, dass \(x^2\) nicht null wird, da dies zu einer Division durch null führen würde. Das bedeutet, dass \(x\) nicht gleich null sein darf. Somit ist der Definitionsbereich: \[ D = \mathbb{R} \setminus \{0\} \] Das bedeutet, dass \(x\) alle reellen Zahlen annehmen kann, außer null.
Um 5250 durch 3500 zu teilen, kannst du den Bruch vereinfachen. 1. Schreibe den Bruch: \( \frac{5250}{3500} \). 2. Teile sowohl den Zähler als auch den Nenner durch 3500: \( \frac{5250 \di... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
Der gemeinsame Nenner von 445 und 1000 ist das kleinste gemeinsame Vielfache (kgV) dieser beiden Zahlen. Um das kgV zu finden, zerlegen wir beide Zahlen in ihre Primfaktoren: - 445 = 5 × 89 - 1... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
1/2 mal fünf ergibt 2,5.
0,5 als Bruch kann als 1/2 dargestellt werden.
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
1/4 + 2/4 ergibt 3/4.