Um einen Term zu berechnen, musst du die mathematischen Operationen in der richtigen Reihenfolge ausführen. Hier sind die grundlegenden Schritte: 1. **Klammern zuerst**: Berechne alle Ausdrü... [mehr]
Um einen Term zu berechnen, musst du die mathematischen Operationen in der richtigen Reihenfolge ausführen. Hier sind die grundlegenden Schritte: 1. **Klammern zuerst**: Berechne alle Ausdrü... [mehr]
Um die Terme \(4x\) und \(3x\) zu addieren, addierst du einfach die Koeffizienten der Terme. Die Koeffizienten sind die Zahlen vor dem \(x\). \[4x + 3x = (4 + 3)x = 7x\] Das Ergebnis der Addition is... [mehr]
Um die Terme auf den Kärtchen zu vereinfachen, gehen wir sie nacheinander durch: 1. **Für den ersten Term:** \( 7 + 3x + 3 - x \) Zuerst die konstanten Zahlen zusammenfassen: \( 7... [mehr]
Um die Werte der Terme zu berechnen, setzen wir die Variable jeweils auf -3. a) Für den Term \(5x - 2x\): \[ 5(-3) - 2(-3) = -15 + 6 = -9 \] b Für den Term \(3,5b + 1,5b\): \[ 3,5(-3) + 1,... [mehr]
Um Terme zu vereinfachen, kannst du folgende Schritte befolgen: 1. **Klammern auflösen**: Multipliziere die Terme innerhalb der Klammern aus. Beispiel: \( a(b + c) = ab + ac \). 2. **Gleiche Te... [mehr]
Um passende Terme oder Gleichungen auf Alltagssituationen anzuwenden, kannst du folgende Schritte befolgen: 1. **Identifikation der Situation**: Überlege dir, welche alltägliche Situation d... [mehr]
Um äquivalente Terme zu finden, fassen wir die gegebenen Terme zusammen: 1. **4x + x** = 5x 2. **4,5x + 1/2x** = 4,5x + 0,5x = 5x 3. **-3x + 7** bleibt -3x + 7 (nicht äquivalent zu den ande... [mehr]
Um die Terme zu vereinfachen, gehen wir sie Schritt für Schritt durch. 1. **Erster Term: \(3x - 4xy + xy - 1,5x\)** Zuerst fassen wir die ähnlichen Terme zusammen: - \(3x - 1,5x = 1... [mehr]
Um Terme zu finden, die zu \( T(z) = 4z + 6 \) äquivalent sind, kannst du verschiedene algebraische Umformungen und Manipulationen verwenden. Hier sind einige Beispiele: 1. \( T(z) = 4(z + \frac... [mehr]
Um die Terme \( a - a + ab - b + b^2 \) zusammenzufassen, kannst du die ähnlichen Terme kombinieren: 1. \( a - a = 0 \) 2. Die verbleibenden Terme sind \( ab - b + b^2 \). Somit ergibt sich: \... [mehr]
Um die Terme so zu ändern, dass sie leichter berechnet werden können, schauen wir uns beide Terme an: 1. **Term 1: \( 50\% \times (n-2) \times 6 \)** Dies kann umgeschrieben werden als:... [mehr]
Um Terme zusammenzufassen, musst du gleichartige Terme identifizieren und sie addieren oder subtrahieren. Gleichartige Terme sind solche, die die gleichen Variablen mit den gleichen Exponenten enthalt... [mehr]
Um einfache Terme zu vereinfachen, kannst du folgende Schritte befolgen: 1. **Summen und Differenzen**: Fasse gleichartige Terme zusammen. Zum Beispiel: \(3x + 2x = 5x\) oder \(5y - 2y = 3y\). 2. **... [mehr]
In Mathe solltest du über Terme und Gleichungen Folgendes wissen: 1. **Terme**: - Definition: Ein Term ist ein mathematischer Ausdruck, der Zahlen, Variablen und Rechenoperationen (Addition,... [mehr]
Um die Teilterme zu vereinfachen und zusammenzufassen, betrachten wir jeden Term einzeln: 1. \( 9y^4 \cdot y^7 = 9y^{4+7} = 9y^{11} \) 2. \( -13y^2 \cdot y^9 = -13y^{2+9} = -13y^{11} \) 3. \( 4y \cdo... [mehr]