Vereinfache die Terme und fasse zusammen: 9y^4 y^7 - 13y^2 y^9 + 4y y^10.

Antwort

Um die Teilterme zu vereinfachen und zusammenzufassen, betrachten wir jeden Term einzeln: 1. \( 9y^4 \cdot y^7 = 9y^{4+7} = 9y^{11} \) 2. \( -13y^2 \cdot y^9 = -13y^{2+9} = -13y^{11} \) 3. \( 4y \cdot y^{10} = 4y^{1+10} = 4y^{11} \) Jetzt fassen wir die Terme zusammen: \[ 9y^{11} - 13y^{11} + 4y^{11} = (9 - 13 + 4)y^{11} = 0y^{11} \] Das Ergebnis ist: \[ 0 \]

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie fasst man Terme zusammen?

Um Terme zusammenzufassen, folge diesen Schritten: 1. **Identifiziere ähnliche Terme**: Ähnliche Terme sind Terme, die die gleichen Variablen mit den gleichen Exponenten haben. Zum Beispiel... [mehr]

Löse die Klammern auf und fasse zusammen: (a-b)(c-d) + c(a+b).

Um den Ausdruck \((a-b)(c-d) + c(a+b)\) zu lösen, gehen wir Schritt für Schritt vor. 1. Zuerst lösen wir die Klammern im ersten Teil \((a-b)(c-d)\): \[ (a-b)(c-d) = a \cdot c - a... [mehr]

Kann man 7y • 2x zusammenfassen?

Ja, die Terme \(7y \cdot 2x\) können zusammengefasst werden. Du multiplizierst die Koeffizienten und die Variablen miteinander. Das ergibt: \[ 7y \cdot 2x = (7 \cdot 2)(y \cdot x) = 14xy \] Als... [mehr]

(5x-2y) hoch 2?

Der Ausdruck \((5x - 2y)^2\) kann durch Anwendung der binomischen Formel \((a - b)^2 = a^2 - 2ab + b^2\) vereinfacht werden. Hier ist \(a = 5x\) und \(b = 2y\). Die Berechnung ergibt: \[ (5x - 2y)^2... [mehr]

Multipliziere und vereinfache (5 - a) • (12a - 5b).

Um die Ausdrücke zu multiplizieren, wendest du die distributive Eigenschaft an. Das bedeutet, dass du jeden Term im ersten Ausdruck mit jedem Term im zweiten Ausdruck multiplizierst. Hier ist di... [mehr]

2x² + 4xy + 6xz gemeinsame Faktoren ausklammern?

Um die gemeinsamen Faktoren aus dem Ausdruck \(2x^2 + 4xy + 6xz\) auszuklammern, kannst du zunächst den größten gemeinsamen Faktor (Ggf) der Koeffizienten und der Variablen bestimmen.... [mehr]

Löse (3x-4y)² auf und fasse zusammen.

Um die Klammern aufzulösen und die Terme zusammenzufassen, wendest du die binomische Formel für das Quadrat eines Binoms an. Die Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). In deinem F... [mehr]

Vereinfache (x+6)(x+6).

Um den Ausdruck \((x + 6)(x + 6)\) zu vereinfachen, kannst du die binomische Formel verwenden. Dies ist ein Quadrat eines Binoms, das wie folgt aussieht: \[ (a + b)^2 = a^2 + 2ab + b^2 \] In deinem... [mehr]

Finde passende Aussagen zu den Termen und übersetze die Terme in Aussagen.

Zu den Termen passende Aussagen könnten wie folgt formuliert werden: **Für die ersten Terme:** a) 2x: "Das Doppelte von x." b) x + 2: "x erhöht um 2." c) x −... [mehr]

Finde zu den Termen passende Aussagen und übersetze sie.

Zu den gegebenen Termen können folgende passende Aussagen formuliert werden: **1. Finde zu den Termen passende Aussagen:** a) 2x: "Das Doppelte von x." b) x + 2: "x erhöht um... [mehr]